ISOMORPHISM AND BI-LIPSCHITZ EQUIVALENCE BETWEEN THE UNIVOQUE SETS

被引:1
|
作者
Jiang, Kan [1 ]
Xi, Lifeng [1 ]
Xu, Shengnan [1 ]
Yang, Jinjin [1 ]
机构
[1] Ningbo Univ, Dept Math, Ningbo, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Isomorphism; bi-Lipschitz equivalence; univoque set; configuration sets; self-similar sets; SELF-SIMILAR SETS; HAUSDORFF DIMENSION; REAL NUMBERS; EXPANSIONS;
D O I
10.3934/dcds.2020271
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider a class of self-similar sets, denoted by A, and investigate the set of points in the self-similar sets having unique codings. We call such set the univoque set and denote it by U-1. We analyze the isomorphism and bi-Lipschitz equivalence between the univoque sets. The main result of this paper, in terms of the dimension of U-1, is to give several equivalent conditions which describe that the closure of two univoque sets, under the lazy maps, are measure theoretically isomorphic with respect to the unique measure of maximal entropy. Moreover, we prove, under the condition U-1 is closed, that isomorphism and bi-Lipschitz equivalence between the univoque sets have resonant phenomenon.
引用
收藏
页码:6089 / 6114
页数:26
相关论文
共 50 条
  • [31] On the extension of bi-Lipschitz mappings
    Lev Birbrair
    Alexandre Fernandes
    Zbigniew Jelonek
    Selecta Mathematica, 2021, 27
  • [32] BI-LIPSCHITZ INVARIANCE OF THE MULTIPLICITY
    Fernandes, Alexandre
    Sampaio, José Edson
    arXiv, 2022,
  • [33] Bi-Lipschitz A-equivalence of K-equivalent map-germs
    Costa, J. C. F.
    Nishimura, T.
    Ruas, M. A. S.
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2014, 108 (01) : 173 - 182
  • [34] RIGIDITY OF BI-LIPSCHITZ EQUIVALENCE OF WEIGHTED HOMOGENEOUS FUNCTION-GERMS IN THE PLANE
    Fernandes, Alexandre
    Ruas, Maria
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2013, 141 (04) : 1125 - 1133
  • [35] Finitely bi-Lipschitz homeomorphisms between Finsler manifolds
    Afanas'eva, Elena
    Golberg, Anatoly
    ANALYSIS AND MATHEMATICAL PHYSICS, 2020, 10 (04)
  • [36] THE DIRECTIONAL DIMENSION OF SUBANALYTIC SETS IS INVARIANT UNDER BI-LIPSCHITZ HOMEOMORPHISMS
    Koike, Satoshi
    Paunescu, Laurentiu
    ANNALES DE L INSTITUT FOURIER, 2009, 59 (06) : 2445 - 2467
  • [37] On the extension of bi-Lipschitz mappings
    Birbrair, Lev
    Fernandes, Alexandre
    Jelonek, Zbigniew
    SELECTA MATHEMATICA-NEW SERIES, 2021, 27 (02):
  • [38] AN INVARIANT OF BI-LIPSCHITZ MAPS
    MOVAHEDILANKARANI, H
    FUNDAMENTA MATHEMATICAE, 1993, 143 (01) : 1 - 9
  • [39] Bi-Lipschitz parameterization of surfaces
    Bonk, M
    Lang, U
    MATHEMATISCHE ANNALEN, 2003, 327 (01) : 135 - 169
  • [40] On the piecewise approximation of bi-Lipschitz curves
    Pratelli, Aldo
    Radici, Emanuela
    RENDICONTI DEL SEMINARIO MATEMATICO DELLA UNIVERSITA DI PADOVA, 2017, 138 : 1 - 37