Probabilistic modeling for symbolic data

被引:3
|
作者
Bock, Hans-Hermann [1 ]
机构
[1] Univ Aachen, Rhein Westfal TH Aachen, Inst Stat, D-52056 Aachen, Germany
关键词
symbolic data; interval data; probability models; minimum volume sets; average intervals; clustering; regression;
D O I
10.1007/978-3-7908-2084-3_5
中图分类号
F [经济];
学科分类号
02 ;
摘要
Symbolic data refer to variables whose 'values' might be, e.g., intervals, sets of categories, or even frequency distributions. Symbolic data analysis provides exploratory methods for revealing the structure of such data and proceeds typically by heuristical, even if suggestive methods that generalize criteria and algorithms from classical multivariate statistics. In contrast, this paper proposes to base the analysis of symbolic data on probability models as well and to derive statistical tools by standard methods (such as maximum likelihood). This approach is exemplified for the case of multivariate interval data where we consider minimum volume hypercubes, average intervals, clustering and regression models, also with reference to previous work.
引用
收藏
页码:55 / 65
页数:11
相关论文
共 50 条
  • [41] Finite Axiomatization for Symbolic Probabilistic π-Calculus
    宋磊
    邓玉欣
    JournalofShanghaiJiaotongUniversity(Science), 2009, 14 (05) : 536 - 541
  • [42] Probabilistic Symbolic Analysis of Neural Networks
    Converse, Hayes
    Filieri, Antonio
    Gopinath, Divya
    Pasareanu, Corina S.
    2020 IEEE 31ST INTERNATIONAL SYMPOSIUM ON SOFTWARE RELIABILITY ENGINEERING (ISSRE 2020), 2020, : 148 - 159
  • [43] PRISM: Probabilistic symbolic model checker
    Kwiatkowska, M
    Norman, G
    Parker, D
    COMPUTER PERFORMANCE EVALUATION: MODELLING TECHNIQUES AND TOOLS, 2002, 2324 : 200 - 204
  • [44] Modeling of Symbolic Systems: Part I - Vector Space Representation of Probabilistic Finite State Automata
    Wen, Yicheng
    Ray, Asok
    Chattopadhyay, Ishanu
    Phoha, Shashi
    2011 AMERICAN CONTROL CONFERENCE, 2011, : 5133 - 5138
  • [45] Feature selection on probabilistic symbolic objects
    Ziani, Djamal
    FRONTIERS OF COMPUTER SCIENCE, 2014, 8 (06) : 933 - 947
  • [46] BayesLDM: A Domain-specific Modeling Language for Probabilistic Modeling of Longitudinal Data
    Tung, Karine
    De La Torre, Steven
    El Mistiri, Mohamed
    De Braganca, Rebecca Braga
    Hekler, Eric
    Pavel, Misha
    Rivera, Daniel
    Klasnja, Pedja
    Spruijt-Metz, Donna
    Marlin, Benjamin M.
    2022 IEEE/ACM CONFERENCE ON CONNECTED HEALTH: APPLICATIONS, SYSTEMS AND ENGINEERING TECHNOLOGIES (CHASE 2022), 2022, : 78 - 90
  • [47] MODELING PROBABILISTIC CATEGORIZATION DATA - EXEMPLAR MEMORY AND CONNECTIONIST NETS
    MYERS, JL
    LOHMEIER, JH
    WELL, AD
    PSYCHOLOGICAL SCIENCE, 1994, 5 (02) : 83 - 89
  • [48] Modeling and Querying Probabilistic RDFS Data Sets with Correlated Triples
    Szeto, Chi-Cheong
    Hung, Edward
    Deng, Yu
    WEB TECHNOLOGIES AND APPLICATIONS, 2011, 6612 : 333 - +
  • [49] Probabilistic Multigraph Modeling for Improving the Quality of Crowdsourced Affective Data
    Ye, Jianbo
    Li, Jia
    Newman, Michelle G.
    Adams, Reginald B., Jr.
    Wang, James Z.
    IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, 2019, 10 (01) : 115 - 128
  • [50] QUANTIFICATION OF DATA EXTRACTION NOISE IN PROBABILISTIC BOOLEAN NETWORK MODELING
    Pal, Ranadip
    Datta, Aniruddha
    Dougherty, Edward
    2009 IEEE INTERNATIONAL WORKSHOP ON GENOMIC SIGNAL PROCESSING AND STATISTICS (GENSIPS 2009), 2009, : 9 - +