Probabilistic modeling for symbolic data

被引:3
|
作者
Bock, Hans-Hermann [1 ]
机构
[1] Univ Aachen, Rhein Westfal TH Aachen, Inst Stat, D-52056 Aachen, Germany
关键词
symbolic data; interval data; probability models; minimum volume sets; average intervals; clustering; regression;
D O I
10.1007/978-3-7908-2084-3_5
中图分类号
F [经济];
学科分类号
02 ;
摘要
Symbolic data refer to variables whose 'values' might be, e.g., intervals, sets of categories, or even frequency distributions. Symbolic data analysis provides exploratory methods for revealing the structure of such data and proceeds typically by heuristical, even if suggestive methods that generalize criteria and algorithms from classical multivariate statistics. In contrast, this paper proposes to base the analysis of symbolic data on probability models as well and to derive statistical tools by standard methods (such as maximum likelihood). This approach is exemplified for the case of multivariate interval data where we consider minimum volume hypercubes, average intervals, clustering and regression models, also with reference to previous work.
引用
收藏
页码:55 / 65
页数:11
相关论文
共 50 条
  • [31] Bayesian Synthesis of Probabilistic Programs for Automatic Data Modeling
    Saad, Feras A.
    Cusumano-Towner, Marco F.
    Schaechtle, Ulrich
    Rinard, Martin C.
    Mansinghka, Vikash K.
    PROCEEDINGS OF THE ACM ON PROGRAMMING LANGUAGES-PACMPL, 2019, 3 (POPL):
  • [32] Probabilistic Approach for Modeling and Presenting Error in Spatial Data
    Fekpe, Edward S.
    Windholz, Thomas K.
    Beard, Kate
    JOURNAL OF SURVEYING ENGINEERING, 2009, 135 (03) : 101 - 112
  • [33] Symbolic model checking for probabilistic processes
    Baier, C
    Clarke, EM
    Hartonas-Garmhausen, V
    Kwiatkowska, M
    Ryan, M
    AUTOMATA, LANGUAGES AND PROGRAMMING, 1997, 1256 : 430 - 440
  • [34] Testing of symbolic-probabilistic systems
    López, N
    Núñez, M
    Rodríguez, I
    FORMAL APPROACHES TO SOFTWARE TESTING, 2005, 3395 : 49 - 63
  • [35] PROBABILISTIC PROCESSING AND THE SYMBOLIC DISTANCE EFFECT
    LOGIE, RH
    BULLETIN OF THE BRITISH PSYCHOLOGICAL SOCIETY, 1980, 33 (MAY): : 194 - 195
  • [37] Symbolic conditioning of arrays in probabilistic programs
    Narayanan P.
    Shan C.-C.
    Proceedings of the ACM on Programming Languages, 2017, 1 (ICFP)
  • [38] Feature selection on probabilistic symbolic objects
    Djamal Ziani
    Frontiers of Computer Science, 2014, 8 : 933 - 947
  • [39] Efficient Symbolic Integration for Probabilistic Inference
    Kolb, Samuel
    Mladenov, Martin
    Sanner, Scott
    Belle, Vaishak
    Kersting, Kristian
    PROCEEDINGS OF THE TWENTY-SEVENTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2018, : 5031 - 5037
  • [40] Finite axiomatization for symbolic probabilistic π-calculus
    Song L.
    Deng Y.-X.
    Journal of Shanghai Jiaotong University (Science), 2009, 14 (05) : 536 - 541