Optimization of a solid oxide fuel cell and micro gas turbine hybrid system

被引:8
|
作者
Wu, Xiao-Juan [1 ]
Zhu, Xin-Jian [2 ]
机构
[1] Univ Elect Sci & Technol China, Sch Automat, Chengdu 610054, Peoples R China
[2] Shanghai Jiao Tong Univ, Inst Fuel Cell, Shanghai 200030, Peoples R China
关键词
solid oxide fuel cell (SOFC); micro gas turbine (MGT); optimization; iterative method; particle swarm optimization (PSO); PARTICLE SWARM OPTIMIZATION;
D O I
10.1002/er.1899
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
For a solid oxide fuel cell (SOFC) and micro gas turbine (MGT) hybrid system, optimal control of load changes requires optimal dynamic scheduling of set points for the system's controllers. Thus, this paper proposes an improved iterative particle swarm optimization (PSO) algorithm to optimize the operating parameters under various loads. This method combines the iteration method and the PSO algorithm together, which can execute the discrete PSO iteratively until the control profile would converge to an optimal one. In MATLAB environment, the simulation results show that the SOFC/MGT hybrid model with the optimized parameters can effectively track the output power with high efficiency. Hence, the improved iterative PSO algorithm can be helpful for system analysis, optimization design, and real-time control of the SOFC/MGT hybrid system. Copyright (c) 2011 John Wiley & Sons, Ltd.
引用
下载
收藏
页码:242 / 249
页数:8
相关论文
共 50 条
  • [41] FUEL UTILIZATION EFFECTS ON SYSTEM EFFICIENCY AND SOLID OXIDE FUEL CELL PERFORMANCE IN GAS TURBINE HYBRID SYSTEMS
    Harun, Nor Farida
    Shadle, Lawrence
    Oryshchyn, Danylo
    Tucker, David
    PROCEEDINGS OF THE ASME TURBO EXPO: TURBINE TECHNICAL CONFERENCE AND EXPOSITION, 2017, VOL 3, 2017,
  • [42] Thermodynamic modelling of an integrated solid oxide fuel cell and micro gas turbine system for desalination purposes
    Hosseini, Mehdi y
    Dincer, Ibrahim
    Ahmadi, Pouria
    Avval, Hasan Barzegar
    Ziaasharhagh, Masoud
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2013, 37 (05) : 426 - 434
  • [43] Thermodynamic performance study of biomass gasification, solid oxide fuel cell and micro gas turbine hybrid systems
    Bang-Moller, C.
    Rokni, M.
    ENERGY CONVERSION AND MANAGEMENT, 2010, 51 (11) : 2330 - 2339
  • [44] RGA ANALYSIS OF A SOLID OXIDE FUEL CELL GAS TURBINE HYBRID PLANT
    Tsai, Alex
    Banta, Larry
    Tucker, David
    Gemmen, Randall
    PROCEEDINGS OF THE 6TH INTERNATIONAL CONFERENCE ON FUEL CELL SCIENCE, ENGINEERING, AND TECHNOLOGY - 2008, 2008, : 675 - 680
  • [45] Technical analysis of a hybrid solid oxide fuel cell/gas turbine cycle
    Leal, Elisangela Martins
    Bortolaia, Luis Antonio
    Leal Junior, Amauri Menezes
    ENERGY CONVERSION AND MANAGEMENT, 2019, 202
  • [46] HYBRID FUEL CELL GAS TURBINE SYSTEM DESIGN AND OPTIMIZATION FOR SOFC
    McLarty, Dustin
    Samuelsen, Scott
    Brouwer, Jack
    PROCEEDINGS OF THE ASME 8TH INTERNATIONAL CONFERENCE ON FUEL CELL SCIENCE, ENGINEERING, AND TECHNOLOGY 2010, VOL 2, 2010, : 269 - 282
  • [47] Influence of Gas Turbine Performance and Fuel Cell Power Share on the Performance of Solid Oxide Fuel Cell/Gas Turbine Hybrid Systems
    Ahn, Ji-Ho
    Kang, Soo Young
    Kim, Tong Seop
    TRANSACTIONS OF THE KOREAN SOCIETY OF MECHANICAL ENGINEERS B, 2012, 36 (04) : 439 - 447
  • [48] Coupling effects of fuel reforming process and fuel utilization on the system performance of a natural gas solid oxide fuel cell/gas turbine hybrid system
    Chen, Hao
    Yang, Chen
    Zhang, Biao
    Zhou, Nana
    Harun, Nor Farida
    Oryshchyn, Danylo
    Tucker, David
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2021, 45 (12) : 17664 - 17690
  • [49] Multi-objective optimization for an integrated renewable, power-to-gas and solid oxide fuel cell/gas turbine hybrid system in microgrid
    Ding, Xiaoyi
    Sun, Wei
    Harrison, Gareth P.
    Lv, Xiaojing
    Weng, Yiwu
    ENERGY, 2020, 213 (213)
  • [50] Performance evaluation of micro gas turbine-solid oxide fuel cell hybrid system under part-load conditions
    Kimijima, Shinji
    Kasagi, Nobuhide
    Nippon Kikai Gakkai Ronbunshu, B Hen/Transactions of the Japan Society of Mechanical Engineers, Part B, 2004, 70 (692): : 1020 - 1027