Optimization of a solid oxide fuel cell and micro gas turbine hybrid system

被引:8
|
作者
Wu, Xiao-Juan [1 ]
Zhu, Xin-Jian [2 ]
机构
[1] Univ Elect Sci & Technol China, Sch Automat, Chengdu 610054, Peoples R China
[2] Shanghai Jiao Tong Univ, Inst Fuel Cell, Shanghai 200030, Peoples R China
关键词
solid oxide fuel cell (SOFC); micro gas turbine (MGT); optimization; iterative method; particle swarm optimization (PSO); PARTICLE SWARM OPTIMIZATION;
D O I
10.1002/er.1899
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
For a solid oxide fuel cell (SOFC) and micro gas turbine (MGT) hybrid system, optimal control of load changes requires optimal dynamic scheduling of set points for the system's controllers. Thus, this paper proposes an improved iterative particle swarm optimization (PSO) algorithm to optimize the operating parameters under various loads. This method combines the iteration method and the PSO algorithm together, which can execute the discrete PSO iteratively until the control profile would converge to an optimal one. In MATLAB environment, the simulation results show that the SOFC/MGT hybrid model with the optimized parameters can effectively track the output power with high efficiency. Hence, the improved iterative PSO algorithm can be helpful for system analysis, optimization design, and real-time control of the SOFC/MGT hybrid system. Copyright (c) 2011 John Wiley & Sons, Ltd.
引用
下载
收藏
页码:242 / 249
页数:8
相关论文
共 50 条
  • [21] Control design for a bottoming solid oxide fuel cell gas turbine hybrid system
    Mueller, Fabian
    Jabbari, Faryar
    Brouwer, Jacob
    Roberts, Rory
    Junker, Tobias
    Ghezel-Ayagh, Hossein
    JOURNAL OF FUEL CELL SCIENCE AND TECHNOLOGY, 2007, 4 (03): : 221 - 230
  • [22] Solid Oxide Fuel Cell/Gas Turbine Hybrid APU System for Aerospace Applications
    Rajashekara, Kaushik
    Grieve, James
    Daggett, David
    CONFERENCE RECORD OF THE 2006 IEEE INDUSTRY APPLICATIONS CONFERENCE, FORTY-FIRST IAS ANNUAL MEETING, VOL 1-5, 2006, : 2185 - 2192
  • [23] Control Oriented Analysis of a Hybrid Solid Oxide Fuel Cell and Gas Turbine System
    Tsourapas, Vasilis
    Sun, Jing
    Stefanopoulou, Anna
    JOURNAL OF FUEL CELL SCIENCE AND TECHNOLOGY, 2009, 6 (04): : 0410081 - 04100811
  • [24] Theoretical basis and performance optimization analysis of a solid oxide fuel cell-gas turbine hybrid system with fuel reforming
    Zhang, Xiuqin
    Wang, Yuan
    Liu, Tie
    Chen, Jincan
    ENERGY CONVERSION AND MANAGEMENT, 2014, 86 : 1102 - 1109
  • [25] The development of control strategy for solid oxide fuel cell and micro gas turbine hybrid power system in ship application
    Jiqing He
    Peilin Zhou
    David Clelland
    Journal of Marine Science and Technology, 2014, 19 : 462 - 469
  • [26] Parametric Analysis on Hybrid System of Solid Oxide Fuel Cell and Micro Gas Turbine With CO2 Capture
    Zhou, Dengji
    Mei, Jiaojiao
    Chen, Jinwei
    Zhang, Huisheng
    Weng, Shilie
    JOURNAL OF FUEL CELL SCIENCE AND TECHNOLOGY, 2014, 11 (05):
  • [27] The development of control strategy for solid oxide fuel cell and micro gas turbine hybrid power system in ship application
    He, Jiqing
    Zhou, Peilin
    Clelland, David
    JOURNAL OF MARINE SCIENCE AND TECHNOLOGY, 2014, 19 (04) : 462 - 469
  • [28] PARAMETRIC ANALYSIS ON HYBRID SYSTEM OF SOLID OXIDE FUEL CELL AND MICRO GAS TURBINE WITH CO2 CAPTURE
    Zhou, Dengji
    Mei, Jiaojiao
    Chen, Jinwei
    Zhang, Huisheng
    Weng, Shilie
    PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2013, VOL 6B, 2014,
  • [29] Fuel utilization effects on system efficiency in solid oxide fuel cell gas turbine hybrid systems
    Oryshchyn, Danylo
    Harun, Nor Farida
    Tucker, David
    Bryden, Kenneth M.
    Shadle, Lawrence
    APPLIED ENERGY, 2018, 228 : 1953 - 1965
  • [30] Solid Oxide Fuel Cell - Gas Turbine Hybrid Power Plant
    Henke, M.
    Willich, C.
    Steilen, M.
    Kallo, J.
    Friedrich, K. A.
    SOLID OXIDE FUEL CELLS 13 (SOFC-XIII), 2013, 57 (01): : 67 - 72