On Twin Edge Colorings of d Infinite Paths

被引:0
|
作者
Yang, Huan [1 ]
Tian, Shuang-liang [1 ]
Jiao, Su-su [1 ]
Cai, Xia-hong [1 ]
机构
[1] Northwest Minzu Univ, Math & Comp Inst, Lanzhou 730030, Gansu, Peoples R China
关键词
Twin edge coloring; Twin chromatic number; Infinite paths; GRAPHS;
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Let sigma be a proper edge coloring of a connected graph G of order at least 3, where the color set is {0,1,2, ... , k - 1}. If sigma can induce a proper vertex coloring of G, then sigma is called a twin edge k-coloring of G. The minimum number of colors for which G has a twin edge coloring is called the twin chromatic index of G. In this paper, twin edge colorings of d infinite paths are studied, and it's twin chromatic number is obtained.
引用
收藏
页码:108 / 111
页数:4
相关论文
共 50 条
  • [31] Edge Colorings of Embedded Graphs
    Zhongde Yan
    Yue Zhao
    Graphs and Combinatorics, 2000, 16 : 245 - 256
  • [32] Edge colorings avoiding patterns*
    Debski, Michal
    EUROPEAN JOURNAL OF COMBINATORICS, 2024, 117
  • [33] Edge colorings of embedded graphs
    Yan, ZD
    Zhao, Y
    GRAPHS AND COMBINATORICS, 2000, 16 (02) : 245 - 256
  • [34] Strong edge colorings of graphs
    Favaron, O
    Li, H
    Schelp, RH
    DISCRETE MATHEMATICS, 1996, 159 (1-3) : 103 - 109
  • [35] Simple reduction of f-colorings to edge-colorings
    Zhou, X
    Nishizeki, T
    COMPUTING AND COMBINATORICS, 1995, 959 : 223 - 228
  • [36] Extending edge-colorings of complete hypergraphs into regular colorings
    Bahmanian, Amin
    JOURNAL OF GRAPH THEORY, 2019, 90 (04) : 547 - 560
  • [37] Adjacent strong edge colorings and total colorings of regular graphs
    Zhang ZhongFu
    Woodall, Douglas R.
    Yao Bing
    Li JingWen
    Chen XiangEn
    Bian Liang
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2009, 52 (05): : 973 - 980
  • [38] EVEN EDGE COLORINGS OF A GRAPH
    ALON, N
    EGAWA, Y
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1985, 38 (01) : 93 - 94
  • [39] Orientable edge colorings of graphs
    Jamison, Robert E.
    DISCRETE APPLIED MATHEMATICS, 2011, 159 (07) : 595 - 604
  • [40] A note on edge colorings and trees
    Jarden, Adi
    Shami, Ziv
    MATHEMATICAL LOGIC QUARTERLY, 2022, 68 (04) : 447 - 457