On Twin Edge Colorings of d Infinite Paths

被引:0
|
作者
Yang, Huan [1 ]
Tian, Shuang-liang [1 ]
Jiao, Su-su [1 ]
Cai, Xia-hong [1 ]
机构
[1] Northwest Minzu Univ, Math & Comp Inst, Lanzhou 730030, Gansu, Peoples R China
关键词
Twin edge coloring; Twin chromatic number; Infinite paths; GRAPHS;
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Let sigma be a proper edge coloring of a connected graph G of order at least 3, where the color set is {0,1,2, ... , k - 1}. If sigma can induce a proper vertex coloring of G, then sigma is called a twin edge k-coloring of G. The minimum number of colors for which G has a twin edge coloring is called the twin chromatic index of G. In this paper, twin edge colorings of d infinite paths are studied, and it's twin chromatic number is obtained.
引用
收藏
页码:108 / 111
页数:4
相关论文
共 50 条
  • [21] Decompositions of edge-colored infinite complete graphs into monochromatic paths
    Elekes, Marton
    Soukup, Daniel T.
    Soukup, Lajos
    Szentmiklossy, Zoltan
    DISCRETE MATHEMATICS, 2017, 340 (08) : 2053 - 2069
  • [22] On Perfect Colorings of Paths Divisible by a Matching
    Lisitsyna M.A.
    Avgustinovich S.V.
    Journal of Applied and Industrial Mathematics, 2022, 16 (01): : 98 - 104
  • [23] Paths, cycles and circular colorings in digraphs
    Wang, Guanghui
    Liu, Guizhen
    THEORETICAL COMPUTER SCIENCE, 2009, 410 (21-23) : 1982 - 1985
  • [24] Distance labelings and (total-)neighbor-distinguishing colorings of the edge-multiplicity-paths-replacements
    Lu Damei
    ARS COMBINATORIA, 2017, 131 : 143 - 159
  • [25] ON PERFECT COLORINGS OF INFINITE MULTIPATH GRAPHS
    Lisitsyna, M. A.
    Avgustinovich, S., V
    Parshina, O. G.
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2020, 17 : 2084 - 2095
  • [26] INFINITE GRAPHS WITH A SPECIFIED NUMBER OF COLORINGS
    HECHLER, SH
    DISCRETE MATHEMATICS, 1977, 19 (03) : 241 - 255
  • [27] Degenerate matchings and edge colorings
    Baste, Julien
    Rautenbach, Dieter
    DISCRETE APPLIED MATHEMATICS, 2018, 239 : 38 - 44
  • [28] EDGE COLORINGS AVOIDING PATTERNS
    Debski, M.
    ACTA MATHEMATICA UNIVERSITATIS COMENIANAE, 2019, 88 (03): : 619 - 623
  • [29] Acyclic edge colorings of graphs
    Alon, N
    Sudakov, B
    Zaks, A
    JOURNAL OF GRAPH THEORY, 2001, 37 (03) : 157 - 167
  • [30] EVEN EDGE COLORINGS OF A GRAPH
    ACHARYA, BD
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1983, 35 (01) : 78 - 79