On Twin Edge Colorings of d Infinite Paths

被引:0
|
作者
Yang, Huan [1 ]
Tian, Shuang-liang [1 ]
Jiao, Su-su [1 ]
Cai, Xia-hong [1 ]
机构
[1] Northwest Minzu Univ, Math & Comp Inst, Lanzhou 730030, Gansu, Peoples R China
关键词
Twin edge coloring; Twin chromatic number; Infinite paths; GRAPHS;
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Let sigma be a proper edge coloring of a connected graph G of order at least 3, where the color set is {0,1,2, ... , k - 1}. If sigma can induce a proper vertex coloring of G, then sigma is called a twin edge k-coloring of G. The minimum number of colors for which G has a twin edge coloring is called the twin chromatic index of G. In this paper, twin edge colorings of d infinite paths are studied, and it's twin chromatic number is obtained.
引用
收藏
页码:108 / 111
页数:4
相关论文
共 50 条
  • [1] ON TWIN EDGE COLORINGS OF GRAPHS
    Andrews, Eric
    Helenius, Laars
    Johnston, Daniel
    VerWys, Jonathon
    Zhang, Ping
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2014, 34 (03) : 613 - 627
  • [2] On twin edge colorings in m-ary trees
    Tolentino, Jayson
    Marcelo, Reginaldo
    Tolentino, Mark Anthony
    ELECTRONIC JOURNAL OF GRAPH THEORY AND APPLICATIONS, 2022, 10 (01) : 131 - 149
  • [3] Perfect Colorings of the Infinite Square Grid: Coverings and Twin Colors
    Krotov, Denis S.
    ELECTRONIC JOURNAL OF COMBINATORICS, 2023, 30 (02):
  • [4] (d, n)-packing colorings of infinite lattices
    Korze, Danilo
    Vesel, Aleksander
    DISCRETE APPLIED MATHEMATICS, 2018, 237 : 97 - 108
  • [5] Twin edge colorings of certain square graphs and product graphs
    Rajarajachozhan, R.
    Sampathkumar, R.
    ELECTRONIC JOURNAL OF GRAPH THEORY AND APPLICATIONS, 2016, 4 (01) : 79 - 93
  • [6] On Twin Edge Colorings of Finite 2-Dimensional Grids
    Yang, Huan
    Tian, Shuang Liang
    Cai, Xia Hong
    Jiao, Su Su
    PROCEEDINGS OF THE 2017 GLOBAL CONFERENCE ON MECHANICS AND CIVIL ENGINEERING (GCMCE 2017), 2017, 132 : 67 - 72
  • [7] Colorings of the d-regular infinite tree
    Hoory, S
    Linial, N
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2004, 91 (02) : 161 - 167
  • [8] Extending partial edge colorings of iterated cartesian products of cycles and paths
    Casselgren, Carl Johan
    Granholm, Jonas B.
    Petros, Fikre B.
    arXiv, 2023,
  • [9] Extending partial edge colorings of iterated cartesian products of cycles and paths
    Casselgren, Carl Johan
    Granholm, Jonas B.
    Petros, Fikre B.
    DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE, 2024, 26 (02): : 1 - 10
  • [10] d-strong Edge Colorings of Graphs
    Arnfried Kemnitz
    Massimiliano Marangio
    Graphs and Combinatorics, 2014, 30 : 183 - 195