An EM algorithm fitting first-order conditional autoregressive models to longitudinal data

被引:15
|
作者
Schmid, CH
机构
关键词
fixed-interval smoothing algorithm; Kalman filter; measurement error; pulmonary function; SEM algorithm; state-space model;
D O I
10.2307/2291750
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
An EM algorithm fits a state-space formulation of the longitudinal regression model in which a continuous response depends on the lagged response and both time-dependent and time-independent covariates. The baseline response depends only on covariates. The model handles both missing data and Gaussian measurement error on both response and continuous covariates. The E step uses the Kalman filter and associated filtering algorithms to update the unknown true response and predictor series for the observed data. The M step uses standard closed-form Gaussian results. Standard errors come from the supplemented EM (SEM) algorithm. The model accurately fits 6 years of pulmonary function measurements on 158 children with many missing observations.
引用
收藏
页码:1322 / 1330
页数:9
相关论文
共 50 条
  • [41] Nonlinear fitting to first-order kinetic equations
    McNaught, IJ
    JOURNAL OF CHEMICAL EDUCATION, 1999, 76 (10) : 1457 - 1457
  • [42] A statistical study for some classes of first-order mixed generalized binomial autoregressive models
    Zhang, Jie
    Shao, Siyu
    Yang, Kai
    Dong, Xiaogang
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2024, 53 (14) : 5057 - 5075
  • [43] FITTING MIXTURE-MODELS TO GROUPED AND TRUNCATED DATA VIA THE EM ALGORITHM
    MCLACHLAN, GJ
    JONES, PN
    BIOMETRICS, 1988, 44 (02) : 571 - 578
  • [44] On modelling of FIR filters with first-order autoregressive errors
    Bayhan, GM
    Bayhan, M
    MODELLING AND SIMULATION 1996, 1996, : 813 - 817
  • [45] Interval Estimation for a First-Order Positive Autoregressive Process
    Hsiao, Wei-Cheng
    Huang, Hao-Yun
    Ing, Ching-Kang
    JOURNAL OF TIME SERIES ANALYSIS, 2018, 39 (03) : 447 - 467
  • [46] A FIRST-ORDER CONDITIONAL PROBABILITY LOGIC WITH ITERATIONS
    Milosevic, Milos
    Ognjanovic, Zoran
    PUBLICATIONS DE L INSTITUT MATHEMATIQUE-BEOGRAD, 2013, 93 (107): : 19 - 27
  • [47] IMPROVED TESTS FOR THE FIRST-ORDER AUTOREGRESSIVE MODEL WITH HETEROSCEDASTICITY
    LYON, J
    TSAI, CL
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 1995, 52 (01) : 71 - 83
  • [48] On the queueing behavior of multiple first-order autoregressive sources
    Hwang, GU
    Sohraby, K
    GLOBECOM '04: IEEE GLOBAL TELECOMMUNICATIONS CONFERENCE, VOLS 1-6, 2004, : 1187 - 1191
  • [49] A notable Gamma-Lindley first-order autoregressive process: An application to hydrological data
    Mello, Alice B., V
    Lima, Maria C. S.
    Nascimento, Abraao D. C.
    ENVIRONMETRICS, 2022, 33 (04)
  • [50] Estimation and diagnostic for partially linear models with first-order autoregressive skew-normal errors
    da Silva Ferreira, Clecio
    Paula, Gilberto A.
    Lana, Gustavo C.
    COMPUTATIONAL STATISTICS, 2022, 37 (01) : 445 - 468