An EM algorithm fitting first-order conditional autoregressive models to longitudinal data

被引:15
|
作者
Schmid, CH
机构
关键词
fixed-interval smoothing algorithm; Kalman filter; measurement error; pulmonary function; SEM algorithm; state-space model;
D O I
10.2307/2291750
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
An EM algorithm fits a state-space formulation of the longitudinal regression model in which a continuous response depends on the lagged response and both time-dependent and time-independent covariates. The baseline response depends only on covariates. The model handles both missing data and Gaussian measurement error on both response and continuous covariates. The E step uses the Kalman filter and associated filtering algorithms to update the unknown true response and predictor series for the observed data. The M step uses standard closed-form Gaussian results. Standard errors come from the supplemented EM (SEM) algorithm. The model accurately fits 6 years of pulmonary function measurements on 158 children with many missing observations.
引用
收藏
页码:1322 / 1330
页数:9
相关论文
共 50 条
  • [21] Exact inference methods for first-order autoregressive distributed lag models
    Dufour, JM
    Kiviet, JF
    ECONOMETRICA, 1998, 66 (01) : 79 - 104
  • [22] Diagnostics for elliptical linear mixed models with first-order autoregressive errors
    Cao, Chun-Zheng
    Lin, Jin-Guan
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2011, 81 (10) : 1281 - 1296
  • [24] Default Bayesian priors for regression models with first-order autoregressive residuals
    Ghosh, M
    Heo, J
    JOURNAL OF TIME SERIES ANALYSIS, 2003, 24 (03) : 269 - 282
  • [25] A nonparametric test for general first-order autoregressive models with a mixed term
    Diebolt, J
    Wandji, JN
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1996, 322 (06): : 577 - 582
  • [26] Influence diagnostics for linear models with first-order autoregressive elliptical errors
    Paula, Gilberto A.
    Medeiros, Marcio
    Vilca-Labra, Filidor E.
    STATISTICS & PROBABILITY LETTERS, 2009, 79 (03) : 339 - 346
  • [27] Validity of fitting a first-order Markov chain model to data
    Eggar, MH
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES D-THE STATISTICIAN, 2002, 51 : 259 - 265
  • [28] Median-unbiased estimation and exact inference methods for first-order autoregressive models with conditional heteroscedasticity of unknown form
    Luger, R
    JOURNAL OF TIME SERIES ANALYSIS, 2006, 27 (01) : 119 - 128
  • [29] Reevaluating multi-pool first-order kinetic models for fitting soil incubation data
    Zhou, Shuhao
    Xiang, Daifeng
    Wang, Gangsheng
    Zhang, Liping
    Lv, Zehao
    Qi, Shanshan
    Li, Wanyu
    GEODERMA, 2025, 455
  • [30] Asymptotics of the Lp-norms of density estimators in the first-order autoregressive models
    Horváth, L
    Zitikis, R
    STATISTICS & PROBABILITY LETTERS, 2003, 65 (04) : 331 - 342