An EM algorithm fitting first-order conditional autoregressive models to longitudinal data

被引:15
|
作者
Schmid, CH
机构
关键词
fixed-interval smoothing algorithm; Kalman filter; measurement error; pulmonary function; SEM algorithm; state-space model;
D O I
10.2307/2291750
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
An EM algorithm fits a state-space formulation of the longitudinal regression model in which a continuous response depends on the lagged response and both time-dependent and time-independent covariates. The baseline response depends only on covariates. The model handles both missing data and Gaussian measurement error on both response and continuous covariates. The E step uses the Kalman filter and associated filtering algorithms to update the unknown true response and predictor series for the observed data. The M step uses standard closed-form Gaussian results. Standard errors come from the supplemented EM (SEM) algorithm. The model accurately fits 6 years of pulmonary function measurements on 158 children with many missing observations.
引用
收藏
页码:1322 / 1330
页数:9
相关论文
共 50 条
  • [1] Parameter estimation of nonlinear mixed-effects models using first-order conditional linearization and the EM algorithm
    Fu, Liyong
    Lei, Yuancai
    Sharma, Ram P.
    Tang, Shouzheng
    JOURNAL OF APPLIED STATISTICS, 2013, 40 (02) : 252 - 265
  • [2] First-Order Learning Models With the GDINA: Estimation With the EM Algorithm and Applications
    Yigit, Hulya D.
    Douglas, Jeffrey A.
    APPLIED PSYCHOLOGICAL MEASUREMENT, 2021, 45 (03) : 143 - 158
  • [3] ERGODICITY OF NONLINEAR FIRST-ORDER AUTOREGRESSIVE MODELS
    BHATTACHARYA, RN
    LEE, CH
    JOURNAL OF THEORETICAL PROBABILITY, 1995, 8 (01) : 207 - 219
  • [4] CADEM: A conditional augmented data EM algorithm for fitting one parameter probit models
    Azevedo, C. L. N.
    Andrade, D. F.
    BRAZILIAN JOURNAL OF PROBABILITY AND STATISTICS, 2013, 27 (02) : 245 - 262
  • [5] The first-order Markov conditional linear expectation approach for analysis of longitudinal data
    Bender, Shaun
    Gamerman, Victoria
    Reese, Peter P.
    Gray, Daniel Lloyd
    Li, Yimei
    Shults, Justine
    STATISTICS IN MEDICINE, 2021, 40 (08) : 1972 - 1988
  • [6] On the estimation bias in first-order bifurcating autoregressive models
    Elbayoumi, Tamer M.
    Mostafa, Sayed A.
    STAT, 2021, 10 (01):
  • [7] Empirical Likelihood for First-order Autoregressive Error-in-variable of Models With Validation Data
    Yu, Shi-Hang
    Wang, De-Hui
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2014, 43 (08) : 1800 - 1823
  • [8] Partially linear models with first-order autoregressive symmetric errors
    Relvas, Carlos Eduardo M.
    Paula, Gilberto A.
    STATISTICAL PAPERS, 2016, 57 (03) : 795 - 825
  • [9] On the Bickel-Rosenblatt test for first-order autoregressive models
    Lee, S
    Na, S
    STATISTICS & PROBABILITY LETTERS, 2002, 56 (01) : 23 - 35
  • [10] Diagnostics for Linear Models with First-order Autoregressive Symmetrical Errors
    Cao, Chun-Zheng
    PROCEEDINGS OF THE 2010 INTERNATIONAL CONFERENCE ON APPLICATION OF MATHEMATICS AND PHYSICS, VOL 2: ADVANCES ON APPLIED MATHEMATICS AND COMPUTATION MATHEMATICS, 2010, : 295 - 298