Similarity solutions for capillary pinch-off in fluids of differing viscosity

被引:78
|
作者
Zhang, WW [1 ]
Lister, JR
机构
[1] Harvard Univ, Div Engn & Appl Sci, Cambridge, MA 02138 USA
[2] Univ Cambridge, Dept Appl Math & Theoret Phys, Inst Theoret Geophys, Cambridge CB3 9EW, England
关键词
D O I
10.1103/PhysRevLett.83.1151
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Self-similar profiles associated with capillary instability of a fluid thread of viscosity lambda eta in surrounding fluid of viscosity eta are obtained for 1/16 less than or equal to lambda less than or equal to 16 via a simplified numerical scheme. Universal similarity scaling is preserved despite an asymptotically large velocity in the pinching neck driven by nonlocal dynamics. The numerical results agree well with experimental measurements by Cohen et al. [preceding Letter, Phys. Rev. Lett. 83, 1147 (1999)]. For all lambda, the self-similar profile is asymmetric and conical far from the minimum. The steep cone slope increases monotonically with lambda; the shallow cone slope is maximized around lambda = 1/4.
引用
收藏
页码:1151 / 1154
页数:4
相关论文
共 50 条
  • [21] Experiments on bubble pinch-off
    Thoroddsen, S. T.
    Etoh, T. G.
    Takehara, K.
    PHYSICS OF FLUIDS, 2007, 19 (04)
  • [22] Giant bubble pinch-off
    Bergmann, R
    van der Meer, D
    Stijnman, M
    Sandtke, M
    Prosperetti, A
    Lohse, D
    PHYSICAL REVIEW LETTERS, 2006, 96 (15)
  • [23] Partial universality: pinch-off dynamics in fluids with smectic liquid crystalline order
    Savage, John R.
    Caggioni, Marco
    Spicer, Patrick T.
    Cohen, Itai
    SOFT MATTER, 2010, 6 (05) : 892 - 895
  • [24] Escape from pinch-off during contraction of liquid sheets and two-dimensional drops of low-viscosity fluids
    Wee, Hansol
    Kumar, Ajay Harishankar
    Liu, Xiao
    Basaran, Osman A.
    PHYSICAL REVIEW FLUIDS, 2024, 9 (10):
  • [25] COMPUTATION OF DROP PINCH-OFF AND OSCILLATION
    LUNDGREN, TS
    MANSOUR, NN
    DROPS AND BUBBLES: THIRD INTERNATIONAL COLLOQUIUM, 1989, 197 : 208 - 215
  • [26] Pinch-off of rods by bulk diffusion
    Aagesen, L. K.
    Johnson, A. E.
    Fife, J. L.
    Voorhees, P. W.
    Miksis, M. J.
    Poulsen, S. O.
    Lauridsen, E. M.
    Marone, F.
    Stampanoni, M.
    ACTA MATERIALIA, 2011, 59 (12) : 4922 - 4932
  • [27] Pinch-off of viscoelastic particulate suspensions
    Thievenaz, Virgile
    Sauret, Alban
    PHYSICAL REVIEW FLUIDS, 2021, 6 (06)
  • [28] Restoring universality to the pinch-off of a bubble
    Pahlavan, Amir A.
    Stone, Howard A.
    McKinley, Gareth H.
    Juanes, Ruben
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2019, 116 (28) : 13780 - 13784
  • [29] The pinch-off syndrome in a pediatric patient
    Caruselli, Marco
    Zannini, Rita
    Giretti, Roberto
    Piattellini, Gianmarco
    Bechi, Patrizia
    Ventrella, Francesco
    Pallotto, Roberta
    Pizzi, Simone
    Pagni, Raffaella
    PEDIATRIC ANESTHESIA, 2009, 19 (02) : 179 - 181
  • [30] Pinch-off of bubbles in a polymer solution
    Rajesh, Sreeram
    Peddada, Sumukh S.
    Thievenaz, Virgile
    Sauret, Alban
    JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 2022, 310