Modeling dynamic controls on ice streams: a Bayesian statistical approach

被引:16
|
作者
Berliner, L. M. [1 ]
Jezek, K. [2 ]
Cressie, N. [1 ]
Kim, Y. [1 ]
Lam, C. Q. [1 ]
Van der Veen, Q. [3 ]
机构
[1] Ohio State Univ, Dept Stat, Columbus, OH 43210 USA
[2] Ohio State Univ, Byrd Polar Res Ctr, Columbus, OH 43210 USA
[3] Univ Kansas, Dept Geog, Lawrence, KS 66045 USA
基金
美国国家科学基金会;
关键词
D O I
10.3189/002214308786570917
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
Our main goal is to exemplify the study of ice-stream dynamics via Bayesian statistical analysis incorporating physical, though imperfectly known, models using data that are both incomplete and noisy. The physical-statistical models we propose account for these uncertainties in a coherent, hierarchical manner. The initial modeling assumption estimates basal shear stress as equal to driving stress, but subsequently includes a random corrector process to account for model error. The resulting stochastic equation is incorporated into a simple model for surface velocities. Use of Bayes' theorem allows us to make inferences on all unknowns given basal elevation, surface elevation and surface velocity. The result is a posterior distribution of possible values that can be summarized in a number of ways. For example, the posterior mean of the stress field indicates average behavior at any location in the field, and the posterior standard deviations describe associated uncertainties. We analyze data from the 'Northeast Greenland Ice Stream' and illustrate how scientific conclusions may be drawn from our Bayesian analysis.
引用
收藏
页码:705 / 714
页数:10
相关论文
共 50 条
  • [41] Bayesian modeling for dynamic background detection
    Liu, Ying-Xia
    He, Chang-Wei
    Wang, Xin
    [J]. Xitong Fangzhen Xuebao / Journal of System Simulation, 2007, 19 (21): : 5042 - 5045
  • [42] Research on modeling with dynamic Bayesian networks
    Tian, FZ
    Zhang, HW
    Lu, YC
    [J]. IEEE/WIC INTERNATIONAL CONFERENCE ON WEB INTELLIGENCE, PROCEEDINGS, 2003, : 606 - 609
  • [43] Dynamic Bayesian Networks for Student Modeling
    Kaser, Tanja
    Klingler, Severin
    Schwing, Alexander G.
    Gross, Markus
    [J]. IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES, 2017, 10 (04): : 450 - 462
  • [44] A Bayesian Approach to the Balancing of Statistical Economic Data
    Rodrigues, Joao F. D.
    [J]. ENTROPY, 2014, 16 (03) : 1243 - 1271
  • [45] BAYESIAN STATISTICAL APPROACH FOR THE ASSESSMENT OF OUTCOMES IN HEALTHCARE
    Marino, M.
    Cisbani, L.
    Greco, F.
    Trivisano, C.
    De Palma, R.
    [J]. EPIDEMIOLOGIA & PREVENZIONE, 2010, 34 (5-6): : 229 - 229
  • [46] THE BAYESIAN-APPROACH TO STATISTICAL DECISION AN EXPOSITION
    HIRSHLEIFER, J
    [J]. JOURNAL OF BUSINESS, 1961, 34 (04): : 471 - 489
  • [47] Statistical analysis of microarray data: a Bayesian approach
    Gottardo, R
    Pannucci, JA
    Kuske, CR
    Brettin, T
    [J]. BIOSTATISTICS, 2003, 4 (04) : 597 - 620
  • [48] Defining statistical perceptions with an empirical Bayesian approach
    Tajima, Satohiro
    [J]. PHYSICAL REVIEW E, 2013, 87 (04)
  • [49] A STATISTICAL APPROACH FOR ESTIMATING SEA ICE THICKNESS
    Veber, Joshua
    Brown, Jeffrey
    Wang, Jungyong
    Browne, Thomas
    Veitch, Brian
    Molyneux, David
    [J]. PROCEEDINGS OF ASME 2023 42ND INTERNATIONAL CONFERENCE ON OCEAN, OFFSHORE & ARCTIC ENGINEERING, OMAE2023, VOL 6, 2023,
  • [50] A Bayesian approach to statistical inference in stochastic DEA
    Tsionas, Efthymios G.
    Papadakis, Emmanuel N.
    [J]. OMEGA-INTERNATIONAL JOURNAL OF MANAGEMENT SCIENCE, 2010, 38 (05): : 309 - 314