Modeling dynamic controls on ice streams: a Bayesian statistical approach

被引:16
|
作者
Berliner, L. M. [1 ]
Jezek, K. [2 ]
Cressie, N. [1 ]
Kim, Y. [1 ]
Lam, C. Q. [1 ]
Van der Veen, Q. [3 ]
机构
[1] Ohio State Univ, Dept Stat, Columbus, OH 43210 USA
[2] Ohio State Univ, Byrd Polar Res Ctr, Columbus, OH 43210 USA
[3] Univ Kansas, Dept Geog, Lawrence, KS 66045 USA
基金
美国国家科学基金会;
关键词
D O I
10.3189/002214308786570917
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
Our main goal is to exemplify the study of ice-stream dynamics via Bayesian statistical analysis incorporating physical, though imperfectly known, models using data that are both incomplete and noisy. The physical-statistical models we propose account for these uncertainties in a coherent, hierarchical manner. The initial modeling assumption estimates basal shear stress as equal to driving stress, but subsequently includes a random corrector process to account for model error. The resulting stochastic equation is incorporated into a simple model for surface velocities. Use of Bayes' theorem allows us to make inferences on all unknowns given basal elevation, surface elevation and surface velocity. The result is a posterior distribution of possible values that can be summarized in a number of ways. For example, the posterior mean of the stress field indicates average behavior at any location in the field, and the posterior standard deviations describe associated uncertainties. We analyze data from the 'Northeast Greenland Ice Stream' and illustrate how scientific conclusions may be drawn from our Bayesian analysis.
引用
收藏
页码:705 / 714
页数:10
相关论文
共 50 条
  • [31] A Bayesian approach to dynamic macroeconomics
    DeJong, DN
    Ingram, BF
    Whiteman, CH
    [J]. JOURNAL OF ECONOMETRICS, 2000, 98 (02) : 203 - 223
  • [32] A Bayesian Approach for Inferring Sea Ice Loads
    Parno, Matthew
    Hodgdon, Taylor
    West, Brendan
    Connor, Devin O.
    Song, Arnold
    [J]. JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 2021, 88 (06):
  • [33] Statistical issues in toxicokinetic modeling: A Bayesian perspective
    Bernillon, P
    Bois, FY
    [J]. ENVIRONMENTAL HEALTH PERSPECTIVES, 2000, 108 : 883 - 893
  • [34] Dynamic Transformation of Prior Knowledge Into Bayesian Models for Data Streams
    Bach, Tran Xuan
    Anh, Nguyen Duc
    Linh, Ngo Van
    Than, Khoat
    [J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (04) : 3742 - 3750
  • [35] THE INFLUENCE OF DYNAMIC ICE FORMATION ON HYDRAULIC HETEROGENEITY IN STEEP STREAMS
    Stickler, Morten
    Alfredsen, Knut T.
    Linnansaari, Tommi
    Fjeldstad, Hans-Petter
    [J]. RIVER RESEARCH AND APPLICATIONS, 2010, 26 (09) : 1187 - 1197
  • [36] Stick-slip behavior of ice streams: modeling investigations
    Sergienko, Olga V.
    Macayeal, Douglas R.
    Bindschadler, Robert A.
    [J]. ANNALS OF GLACIOLOGY, 2009, 50 (52) : 87 - 94
  • [37] Cerebral modeling and dynamic Bayesian networks
    Labatut, V
    Pastor, J
    Ruff, S
    Démonet, JF
    Celsis, P
    [J]. ARTIFICIAL INTELLIGENCE IN MEDICINE, 2004, 30 (02) : 119 - 139
  • [38] Performance modeling for dynamic Bayesian networks
    Chang, KC
    Sun, W
    [J]. SIGNAL PROCESSING, SENSOR FUSION, AND TARGET RECOGNITION XIII, 2004, 5429 : 384 - 391
  • [39] Dynamic Bayesian networks for language modeling
    Wiggers, Pascal
    Rothkrantz, Leon J. M.
    [J]. TEXT, SPEECH AND DIALOGUE, PROCEEDINGS, 2006, 4188 : 555 - 562
  • [40] Bayesian modeling of dynamic motion integration
    Montagnini, Anna
    Mamassian, Pascal
    Perrinet, Laurent
    Castet, Eric
    Masson, Guillaume S.
    [J]. JOURNAL OF PHYSIOLOGY-PARIS, 2007, 101 (1-3) : 64 - 77