Modeling dynamic controls on ice streams: a Bayesian statistical approach

被引:16
|
作者
Berliner, L. M. [1 ]
Jezek, K. [2 ]
Cressie, N. [1 ]
Kim, Y. [1 ]
Lam, C. Q. [1 ]
Van der Veen, Q. [3 ]
机构
[1] Ohio State Univ, Dept Stat, Columbus, OH 43210 USA
[2] Ohio State Univ, Byrd Polar Res Ctr, Columbus, OH 43210 USA
[3] Univ Kansas, Dept Geog, Lawrence, KS 66045 USA
基金
美国国家科学基金会;
关键词
D O I
10.3189/002214308786570917
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
Our main goal is to exemplify the study of ice-stream dynamics via Bayesian statistical analysis incorporating physical, though imperfectly known, models using data that are both incomplete and noisy. The physical-statistical models we propose account for these uncertainties in a coherent, hierarchical manner. The initial modeling assumption estimates basal shear stress as equal to driving stress, but subsequently includes a random corrector process to account for model error. The resulting stochastic equation is incorporated into a simple model for surface velocities. Use of Bayes' theorem allows us to make inferences on all unknowns given basal elevation, surface elevation and surface velocity. The result is a posterior distribution of possible values that can be summarized in a number of ways. For example, the posterior mean of the stress field indicates average behavior at any location in the field, and the posterior standard deviations describe associated uncertainties. We analyze data from the 'Northeast Greenland Ice Stream' and illustrate how scientific conclusions may be drawn from our Bayesian analysis.
引用
收藏
页码:705 / 714
页数:10
相关论文
共 50 条
  • [1] Equilibrium dynamics of ice streams: a Bayesian statistical analysis
    L. M. Berliner
    N. Cressie
    K. Jezek
    Y. Kim
    C. Q. Lam
    C. J. van der Veen
    [J]. Statistical Methods and Applications, 2008, 17 : 145 - 165
  • [2] Equilibrium dynamics of ice streams: a Bayesian statistical analysis
    Berliner, L. M.
    Cressie, N.
    Jezek, K.
    Kim, Y.
    Lam, C. Q.
    van der Veen, C. J.
    [J]. STATISTICAL METHODS AND APPLICATIONS, 2008, 17 (02): : 145 - 165
  • [3] The Bayesian approach: a natural framework for statistical modeling
    Van Calster, B.
    Nabney, I.
    Timmerman, D.
    Van Huffel, S.
    [J]. ULTRASOUND IN OBSTETRICS & GYNECOLOGY, 2007, 29 (05) : 485 - 488
  • [4] What controls the location of ice streams?
    Winsborrow, Monica C. M.
    Clark, Chris D.
    Stokes, Chris R.
    [J]. EARTH-SCIENCE REVIEWS, 2010, 103 (1-2) : 45 - 59
  • [5] Tidal controls on the flow of ice streams
    Rosier, Sebastian H. R.
    Gudmundsson, G. Hilmar
    [J]. GEOPHYSICAL RESEARCH LETTERS, 2016, 43 (09) : 4433 - 4440
  • [6] Nonlinear regression modeling of nutrient loads in streams: A Bayesian approach
    Qian, SS
    Reckhow, KH
    Zhai, J
    McMahon, G
    [J]. WATER RESOURCES RESEARCH, 2005, 41 (07) : 1 - 10
  • [7] The Population Posterior and Bayesian Modeling on Streams
    McInerney, James
    Ranganath, Rajesh
    Blei, David
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 28 (NIPS 2015), 2015, 28
  • [8] Statistical modeling with R: a dual frequentist and Bayesian approach for life scientists
    Ronnegard, Lars
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES A-STATISTICS IN SOCIETY, 2023, 186 (04) : 901 - 902
  • [9] Statistical Modeling with R: A Dual Frequentist and Bayesian Approach for Life Scientists
    Robert, Christian P.
    Inchausti, Pablo
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2024, 119 (546) : 1691 - 1692
  • [10] MODELING A DYNAMIC ENVIRONMENT USING A BAYESIAN MULTIPLE HYPOTHESIS APPROACH
    COX, IJ
    LEONARD, JJ
    [J]. ARTIFICIAL INTELLIGENCE, 1994, 66 (02) : 311 - 344