VISCOELASTICITY MEASUREMENT AND IDENTIFICATION OF VISCOELASTIC PARAMETRIC MODELS

被引:0
|
作者
Renaud, Franck [1 ]
Chevallier, Gael [1 ]
Dion, Jean-Luc [1 ]
Lemaire, Remi
机构
[1] ISMEP Supmeca, LISMMA EA2336, F-93400 St Ouen, France
关键词
D O I
暂无
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Generally speaking, the behaviour of viscoelastic material is more complicated than the behaviour proposed by classical models as Voigt, Maxwell or Zener. The stiffness of such materials is a frequency dependent complex function. Above 1000Hz, classical measurements techniques are unable to achieve accurate measurements of the stiffness. In this paper a new Dynamical Mechanical Analysis (DMA). tester is presented. It allows the characterization of the shear stiffness of preloaded viscoelastic materials between 200 and 3500Hz and without using frequency-temperature equivalences. Then the Generalized Maxwell model is used to describe behaviours measured with the DMA tester A new iterative identification method of the parameter of the Generalized Maxwell model is described. This identification method is based on the asymptotes of the model.
引用
收藏
页码:701 / 708
页数:8
相关论文
共 50 条
  • [21] IDENTIFICATION OF QUASI-STATIC DISPLACEMENT FOR CONSTITUTIVE MODELS OF VISCOELASTICITY
    杨海天
    邬瑞锋
    张群
    AppliedMathematicsandMechanics(EnglishEdition), 1998, (03) : 237 - 242
  • [22] Identification of quasi-static displacement for constitutive models of viscoelasticity
    Yang, HT
    Wu, RF
    Zhang, Q
    APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 1998, 19 (03) : 237 - 242
  • [23] Identification of quasi-static displacement for constitutive models of viscoelasticity
    Yang Haitian
    Wu Ruifeng
    Zhang Qun
    Applied Mathematics and Mechanics, 1998, 19 (3) : 237 - 242
  • [24] Extrapolation in parametric models with Laplace measurement error
    Shi, Jianhong
    Guo, Linruo
    Bai, Xiuqin
    Song, Weixing
    STAT, 2022, 11 (01):
  • [25] PROBLEMS OF MEASUREMENT IN PSYCHOLOGY - PARAMETRIC AND DATA MODELS
    FISCHER, GH
    ZEITSCHRIFT FUR EXPERIMENTELLE UND ANGEWANDTE PSYCHOLOGIE, 1970, 17 (02): : 212 - &
  • [26] Parametric identification of viscoelastic materials from time and frequency domain data
    Mossberg, M
    Hillström, L
    Abrahamsson, L
    INVERSE PROBLEMS IN ENGINEERING, 2001, 9 (06): : 645 - 670
  • [27] A parametric model order reduction technique for inverse viscoelastic material identification
    Xie, Xiang
    Zheng, Hui
    Jonckheere, Stijn
    Pluymers, Bert
    Desmet, Wim
    COMPUTERS & STRUCTURES, 2019, 212 : 188 - 198
  • [28] Identification of Parametric Models for Commissioning Servo Drives
    Hofmann, S.
    Hellmich, A.
    Schlegel, H.
    RECENT ADVANCES IN MECHATRONICS: 2008-2009, 2009, : 287 - 292
  • [29] Parametric Identification of the Models with Specified Quality Characteristics
    Kantor, O. G.
    Spivak, S., I
    Morozkin, N. D.
    ENGINEERING TECHNOLOGIES AND SYSTEMS, 2019, 29 (04): : 480 - 495
  • [30] Parametric Identification of Nonlinear Fractional Hammerstein Models
    Prasad, Vineet
    Kothari, Kajal
    Mehta, Utkal
    FRACTAL AND FRACTIONAL, 2020, 4 (01) : 1 - 12