A generalization of Kawanaka's identity for Hall-Littlewood polynomials and applications

被引:3
|
作者
Ishikawa, Masao [1 ]
Jouhet, Frederic
Zeng, Jiang
机构
[1] Tottori Univ, Fac Educ, Dept Math, Tottori 6808551, Japan
[2] Univ Lyon 1, Inst Camille Jordan, F-69622 Villeurbanne, France
关键词
symmetric functions; Hall-Littlewood polynomials; Q-series; Rogers-Ramanujan type identities;
D O I
10.1007/s10801-006-8350-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An infinite summation formula of Hall-Littlewood polynomials due to Kawanaka is generalized to a finite summation formula, which implies, in particular, twelve more multiple q-identities of Rogers-Ramanujan type than those previously found by Stembridge and the last two authors.
引用
收藏
页码:395 / 412
页数:18
相关论文
共 50 条
  • [21] Abacus-tournament models for Hall-Littlewood polynomials
    Loehr, Nicholas A.
    Wills, Andrew J.
    DISCRETE MATHEMATICS, 2016, 339 (10) : 2423 - 2445
  • [22] Coulomb branch Hilbert series and Hall-Littlewood polynomials
    Stefano Cremonesi
    Amihay Hanany
    Noppadol Mekareeya
    Alberto Zaffaroni
    Journal of High Energy Physics, 2014
  • [23] Transition matrices for symmetric and quasisymmetric Hall-Littlewood polynomials
    Loehr, Nicholas A.
    Serrano, Luis G.
    Warrington, Gregory S.
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2013, 120 (08) : 1996 - 2019
  • [24] Hall-Littlewood polynomials and vector bundles on the Hilbert scheme
    Carlsson, Erik
    ADVANCES IN MATHEMATICS, 2015, 278 : 56 - 66
  • [25] GREEN POLYNOMIALS AND HALL-LITTLEWOOD FUNCTIONS AT ROOTS OF UNITY
    LASCOUX, A
    LECLERC, B
    THIBON, JY
    EUROPEAN JOURNAL OF COMBINATORICS, 1994, 15 (02) : 173 - 180
  • [26] Harmonic analysis of boxed hyperoctahedral Hall-Littlewood polynomials
    van Diejen, J. F.
    JOURNAL OF FUNCTIONAL ANALYSIS, 2022, 282 (01)
  • [27] Coulomb branch Hilbert series and Hall-Littlewood polynomials
    Cremonesi, Stefano
    Hanany, Amihay
    Mekareeya, Noppadol
    Zaffaroni, Alberto
    JOURNAL OF HIGH ENERGY PHYSICS, 2014, (09):
  • [29] Hall-Littlewood vertex operators and generalized Kostka polynomials
    Shimozono, M
    Zabrocki, M
    ADVANCES IN MATHEMATICS, 2001, 158 (01) : 66 - 85
  • [30] Hall-Littlewood polynomials and characters of affine Lie algebras
    Bartlett, Nick
    Warnaar, S. Ole
    ADVANCES IN MATHEMATICS, 2015, 285 : 1066 - 1105