Existence and stability analysis of asymmetric patterns for the Gierer-Meinhardt system

被引:26
|
作者
Wei, JC [1 ]
Winter, M
机构
[1] Chinese Univ Hong Kong, Dept Math, Shatin, Hong Kong, Peoples R China
[2] Univ Stuttgart, Fachbereich Math, D-70511 Stuttgart, Germany
来源
关键词
asymmetric patterns; pattern formation; mathematical biology; singular perturbation; weak coupling;
D O I
10.1016/j.matpur.2003.09.006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we rigorously prove the existence and stability of K-peaked asymmetric patterns for the Gierer-Meinhardt system in a two-dimensional domain which are far from spatial homogeneity. We show that given any positive integers k(1), k(2)greater than or equal to1 with k(1)+k(2)=K, there are asymmetric patterns with k(1) large peaks and k(2) small peaks. Most of these asymmetric patterns are shown to be unstable. However, in a narrow range of parameters, asymmetric patterns may be stable (in contrast to the one-dimensional case). (C) 2003 Elsevier SAS. All rights reserved.
引用
收藏
页码:433 / 476
页数:44
相关论文
共 50 条
  • [31] Global existence and finite time blow-up of solutions of a Gierer-Meinhardt system
    Li, Fang
    Peng, Rui
    Song, Xianfa
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 262 (01) : 559 - 589
  • [32] Codimension-Two Bifurcation Analysis on a Discrete Gierer-Meinhardt System
    Liu, Xijuan
    Liu, Yun
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2020, 30 (16):
  • [33] Spike Solutions to the Supercritical Fractional Gierer-Meinhardt System
    Gomez, Daniel
    De Medeiros, Markus
    Wei, Jun-cheng
    Yang, Wen
    JOURNAL OF NONLINEAR SCIENCE, 2024, 34 (01)
  • [34] Spikes for the Gierer-Meinhardt System with Discontinuous Diffusion Coefficients
    Wei, Juncheng
    Winter, Matthias
    JOURNAL OF NONLINEAR SCIENCE, 2009, 19 (03) : 301 - 339
  • [35] ANALYSIS OF THE HOPF BIFURCATION IN A DIFFUSIVE GIERER-MEINHARDT MODEL
    Asheghi, Rasoul
    TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2023, 62 (01) : 83 - 104
  • [36] Stability and bifurcation diagram for a shadow Gierer-Meinhardt system in one spatial dimension
    Kaneko, Yuki
    Miyamoto, Yasuhito
    Wakasa, Tohru
    NONLINEARITY, 2024, 37 (05)
  • [37] Positive clustered layered solutions for the Gierer-Meinhardt system
    Kolokolonikov, T.
    Wei, Juncheng
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2008, 245 (04) : 964 - 993
  • [38] A singular Gierer-Meinhardt system of elliptic equations in RN
    Moussaoui, Abdelkrim
    Khodja, Brahim
    Tas, Saadia
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (3-4) : 708 - 716
  • [39] METASTABILITY IN THE SHADOW SYSTEM FOR GIERER-MEINHARDT'S EQUATIONS
    De Groen, Pieter
    Karadzhov, Georgi
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2002,
  • [40] A singular Gierer-Meinhardt system with different source terms
    Ghergu, Marius
    Radulescu, Vicentiu
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2008, 138 : 1215 - 1234