Existence and stability analysis of asymmetric patterns for the Gierer-Meinhardt system

被引:26
|
作者
Wei, JC [1 ]
Winter, M
机构
[1] Chinese Univ Hong Kong, Dept Math, Shatin, Hong Kong, Peoples R China
[2] Univ Stuttgart, Fachbereich Math, D-70511 Stuttgart, Germany
来源
关键词
asymmetric patterns; pattern formation; mathematical biology; singular perturbation; weak coupling;
D O I
10.1016/j.matpur.2003.09.006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we rigorously prove the existence and stability of K-peaked asymmetric patterns for the Gierer-Meinhardt system in a two-dimensional domain which are far from spatial homogeneity. We show that given any positive integers k(1), k(2)greater than or equal to1 with k(1)+k(2)=K, there are asymmetric patterns with k(1) large peaks and k(2) small peaks. Most of these asymmetric patterns are shown to be unstable. However, in a narrow range of parameters, asymmetric patterns may be stable (in contrast to the one-dimensional case). (C) 2003 Elsevier SAS. All rights reserved.
引用
收藏
页码:433 / 476
页数:44
相关论文
共 50 条
  • [21] EXISTENCE, NONEXISTENCE AND UNIQUENESS OF POSITIVE STATIONARY SOLUTION OF A SINGULAR GIERER-MEINHARDT SYSTEM
    Peng, Rui
    Song, Xianfa
    Wei, Lei
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2017, 37 (08) : 4489 - 4505
  • [22] Turing patterns of Gierer-Meinhardt model on complex networks
    Guo, Luyao
    Shi, Xinli
    Cao, Jinde
    NONLINEAR DYNAMICS, 2021, 105 (01) : 899 - 909
  • [23] Stability of spikes in the shadow Gierer-Meinhardt system with Robin boundary conditions
    Maini, Philip K.
    Wei, Juncheng
    Winter, Matthias
    CHAOS, 2007, 17 (03)
  • [24] A singular Gierer-Meinhardt system of elliptic equations
    Choi, YS
    McKenna, PJ
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2000, 17 (04): : 503 - 522
  • [25] Bifurcations and Turing patterns in a diffusive Gierer-Meinhardt model
    Wang, Yong
    Guo, Mengping
    Jiang, Weihua
    ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2023, (27) : 1 - 22
  • [26] The stability of a stripe for the Gierer-Meinhardt model and the effect of saturation
    Kolokolnikov, Theodore
    Sun, Wentao
    Ward, Michael
    Wei, Juncheng
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2006, 5 (02): : 313 - 363
  • [27] Stability Of Periodic Solutions In Extended Gierer-Meinhardt Model
    Lian, Jin-Guo
    APPLIED MATHEMATICS E-NOTES, 2009, 9 : 27 - 33
  • [28] AN ASYMPTOTIC ANALYSIS OF LOCALIZED THREE-DIMENSIONAL SPOT PATTERNS FOR THE GIERER-MEINHARDT MODEL: EXISTENCE, LINEAR STABILITY, AND SLOW DYNAMICS
    Gomez, Daniel
    Ward, Michael J.
    Wei, Juncheng
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2021, 81 (02) : 378 - 406
  • [29] The stationary Gierer-Meinhardt system in the upper half-space: existence, nonexistence and asymptotics
    Ghergu, Marius
    MATHEMATISCHE ANNALEN, 2024, 390 (02) : 2897 - 2929
  • [30] DYNAMICS OF A BOUNDARY SPIKE FOR THE SHADOW GIERER-MEINHARDT SYSTEM
    Ei, Shin-Ichiro
    Ikeda, Kota
    Miyamoto, Yasuhito
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2012, 11 (01) : 115 - 145