On singular foliations on the solid torus

被引:0
|
作者
Arraut, Jose L. [1 ]
Martins, Luciana F. [2 ]
Schuetz, Dirk [3 ]
机构
[1] Univ Sao Paulo, Dept Matemat, ICMC, BR-13560970 Sao Carlos, SP, Brazil
[2] Univ Estadual Paulista, Dept Matemat, Inst Biociencias Letras & Ciencias Exatas, Sao Paulo, Brazil
[3] Univ Durham, Dept Math Sci, Sci Laboritories, Durham DH1 3LE, England
基金
巴西圣保罗研究基金会;
关键词
Foliations; Solid torus; Vector fields; CODIMENSION-ONE FOLIATIONS; MORSE SINGULARITIES; ORBITS;
D O I
10.1016/j.topol.2013.06.012
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study smooth foliations on the solid torus S-1 x D-2 having S-1 x {0} and S-1 x partial derivative D-2 as the only compact leaves and S-1 x {0} as singular set. We show that all other leaves can only be cylinders or planes, and give necessary conditions for the foliation to be a suspension of a diffeomorphism of the disc. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:1659 / 1674
页数:16
相关论文
共 50 条
  • [31] Quasi-isometric singular foliations
    Diop, ECM
    [J]. INDAGATIONES MATHEMATICAE-NEW SERIES, 1998, 9 (01): : 15 - 29
  • [32] Basic Cohomology for Singular Riemannian Foliations
    Robert A. Wolak
    [J]. Monatshefte für Mathematik, 1999, 128 : 159 - 163
  • [33] Progress in the theory of singular Riemannian foliations
    Alexandrino, Marcos M.
    Briquet, Rafael
    Toeben, Dirk
    [J]. DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2013, 31 (02) : 248 - 267
  • [34] Singular foliations with trivial canonical class
    Frank Loray
    Jorge Vitório Pereira
    Frédéric Touzet
    [J]. Inventiones mathematicae, 2018, 213 : 1327 - 1380
  • [35] Kodaira dimension of holomorphic singular foliations
    Luís Gustavo Mendes
    [J]. Boletim da Sociedade Brasileira de Matemática - Bulletin/Brazilian Mathematical Society, 2000, 31 : 127 - 143
  • [36] On smooth separatrices of foliations on singular surfaces
    Gerardo Gonzalez-Sprinberg
    Ivan Pan
    [J]. Bulletin of the Brazilian Mathematical Society, New Series, 2015, 46 : 1 - 21
  • [37] Singular Foliations for Knit Graph Design
    Mitra, Rahul
    Berumen, Erick Jimenez
    Hofmann, Megan
    Chien, Edward
    [J]. PROCEEDINGS OF SIGGRAPH 2024 CONFERENCE PAPERS, 2024,
  • [38] On the topology of leaves of singular Riemannian foliations
    Radeschi, Marco
    Samani, Elahe Khalili
    [J]. REVISTA MATEMATICA IBEROAMERICANA, 2024, 40 (01) : 111 - 128
  • [39] Frobenius theorem for foliations on singular varieties
    Cerveau, D.
    Lins Neto, A.
    [J]. BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2008, 39 (03): : 447 - 469
  • [40] On smooth separatrices of foliations on singular surfaces
    Gonzalez-Sprinberg, Gerardo
    Pan, Ivan
    [J]. BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2015, 46 (01): : 1 - 21