Progress in the theory of singular Riemannian foliations

被引:21
|
作者
Alexandrino, Marcos M. [1 ]
Briquet, Rafael [1 ]
Toeben, Dirk [1 ]
机构
[1] Univ Sao Paulo, Inst Matemat & Estat, BR-05508090 Sao Paulo, Brazil
基金
巴西圣保罗研究基金会;
关键词
Isometric actions; Riemannian foliations; Polar actions; Variationally complete actions; Molino's conjecture; Desingularizations; VARIATIONALLY COMPLETE ACTIONS; SYMMETRIC-SPACES; HYPERPOLAR;
D O I
10.1016/j.difgeo.2013.01.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A singular foliation is called a singular Riemannian foliation (SRF) if every geodesic that is perpendicular to one leaf is perpendicular to every leaf it meets. A typical example is the partition of a complete Riemannian manifold into orbits of an isometric action. In this survey, we provide an introduction to the theory of SRFs, leading from the foundations to recent developments. Sketches of proofs are included and useful techniques are emphasized. We study the local structure of SRFs in general and under curvature conditions in particular. We also review the solution of the Palais-Terng problem on integrability of the horizontal distribution. Important special classes of SRFs, like polar and variationally complete foliations and their relations, are treated. A characterization of SRFs whose leaf space is an orbifold is given. Moreover, desingularizations of SRFs are studied and applications, e.g., to Molino's conjecture, are presented. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:248 / 267
页数:20
相关论文
共 50 条
  • [1] Minimal singular riemannian foliations
    Miquel, V
    Wolak, RA
    [J]. COMPTES RENDUS MATHEMATIQUE, 2006, 342 (01) : 33 - 36
  • [2] Singular riemannian foliations with sections
    Alexandrino, MM
    [J]. ILLINOIS JOURNAL OF MATHEMATICS, 2004, 48 (04) : 1163 - 1182
  • [3] Cohomology of singular Riemannian foliations
    Masa, XM
    Rodríguez-Fernández, A
    [J]. COMPTES RENDUS MATHEMATIQUE, 2006, 342 (08) : 601 - 604
  • [4] TRANSVERSALLY INTEGRABLE SINGULAR RIEMANNIAN FOLIATIONS
    BOUALEM, H
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1992, 314 (07): : 547 - 550
  • [5] Basic Cohomology for Singular Riemannian Foliations
    Robert A. Wolak
    [J]. Monatshefte für Mathematik, 1999, 128 : 159 - 163
  • [6] On the topology of leaves of singular Riemannian foliations
    Radeschi, Marco
    Samani, Elahe Khalili
    [J]. REVISTA MATEMATICA IBEROAMERICANA, 2024, 40 (01) : 111 - 128
  • [7] Singular Riemannian Foliations and Isoparametric Submanifolds
    Thorbergsson, Gudlaugur
    [J]. MILAN JOURNAL OF MATHEMATICS, 2010, 78 (01) : 355 - 370
  • [8] Cohomological tautness of singular Riemannian foliations
    Royo Prieto, José Ignacio
    Saralegi-Aranguren, Martintxo
    Wolak, Robert
    [J]. Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales - Serie A: Matematicas, 2019, 113 (04) : 4263 - 4286
  • [9] Geometric resolution of singular Riemannian foliations
    Alexander Lytchak
    [J]. Geometriae Dedicata, 2010, 149 : 379 - 395
  • [10] Geometric resolution of singular Riemannian foliations
    Lytchak, Alexander
    [J]. GEOMETRIAE DEDICATA, 2010, 149 (01) : 379 - 395