Nanoindentation of WC-Co hardmetals

被引:64
|
作者
Duszova, Annamaria [1 ]
Halgas, Radoslav [1 ,2 ]
Bl'anda, Marek [1 ,2 ]
Hvizdos, Pavol [1 ]
Lofaj, Frantisek [1 ]
Dusza, Jan [1 ,3 ]
Morgiel, Jerzy [4 ]
机构
[1] Slovak Acad Sci, Inst Mat Res, Kosice 04353, Slovakia
[2] Fac Mat Sci & Technol STU, Trnava 91724, Slovakia
[3] Obuda Univ, Donat Banki Fac Mech & Safety Engn, H-1428 Budapest, Hungary
[4] Polish Acad Sci, Inst Met & Mat Sci, PL-30059 Krakow, Poland
关键词
WC crystals; Nanoindentation; Hardness; Load-size effect; Orientation effect; HARDNESS; CRYSTALS; MODULUS; WC/CO; SLIP;
D O I
10.1016/j.jeurceramsoc.2012.12.018
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
WC-Co cemented carbide has been investigated using instrumented indentation with maximum applied loads from 0.1 to 10 mN. The hardness and indentation modulus of individual phases and the influence of crystallographic orientation of WC on the hardness and indentation modulus have been studied. The hardness of the Co binder was approximately 10 GPa and that of WC grains up to 50 GPa with relatively large scatter under the indentation load of 1 mN. Investigation of the role of crystallographic orientation of WC grains on hardness at 10 mN load revealed average values of H-ITbasal = 40.4 GPa (E-ITbasal = 674 GPa) and H-ITprismatic = 32.8 GPa (E-Itprismatic = 542 GPa), respectively. The scatter in the measured values at low indentation loads is caused by the effects of surface and sub-surface characteristics (residual stress, damaged region) and at higher loads by "mix-phase" volume below the indenter. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2227 / 2232
页数:6
相关论文
共 50 条
  • [21] HIP after sintering of ultrafine WC-Co hardmetals
    Sánchez, JM
    Ordóñez, A
    González, R
    [J]. INTERNATIONAL JOURNAL OF REFRACTORY METALS & HARD MATERIALS, 2005, 23 (03): : 193 - 198
  • [22] A new approach to fabrication of gradient WC-Co hardmetals
    Konyashin, I.
    Hlawatschek, S.
    Ries, B.
    Lachmann, F.
    Sologubenko, A.
    Weirich, T.
    [J]. INTERNATIONAL JOURNAL OF REFRACTORY METALS & HARD MATERIALS, 2010, 28 (02): : 228 - 237
  • [23] FATIGUE-CRACK GROWTH IN WC-CO HARDMETALS
    ALMOND, EA
    ROEBUCK, B
    [J]. METALS TECHNOLOGY, 1980, 7 (FEB): : 83 - 85
  • [24] Fracture behaviour of WC-Co hardmetals with WC partially substituted by titanium carbide
    Szutkowska, M.
    Boniecki, M.
    Cygan, S.
    Kalinka, A.
    Grilli, M. L.
    Balos, S.
    [J]. E-MRS FALL SYMPOSIUM I: SOLUTIONS FOR CRITICAL RAW MATERIALS UNDER EXTREME CONDITIONS, 2018, 329
  • [25] Sintering behaviour and properties of WC-Co hardmetals in relation to the WC powder properties
    Gille, G
    Leitner, G
    Roebuck, B
    [J]. ADVANCES IN HARD MATERIALS PRODUCTION, 1996, : 195 - 210
  • [26] ORIGIN OF WC SUBSTRUCTURE AND THE EFFECT OF PROCESSING ON THE MICROSTRUCTURE OF WC-Co HARDMETALS.
    Almond, Eric A.
    Roebuck, Bryan
    [J]. High Temperatures - High Pressures, 1982, 14 (02) : 143 - 154
  • [27] Effect of Heat Treatment on Structure and Properties of WC-Co Hardmetals
    Yang Jinhui Lai Hoyi (Institute of Mining and Mineral Engineering)(Department of Materials Science and Engineering
    [J]. 工程科学学报, 1991, (S2) : 29 - 34
  • [28] Surface finishing: Impact on tribological characteristics of WC-Co hardmetals
    Bonny, K.
    De Baets, P.
    Quintelier, J.
    Vleugels, J.
    Jiang, D.
    Van der Biest, O.
    Lauwers, B.
    Liu, W.
    [J]. TRIBOLOGY INTERNATIONAL, 2010, 43 (1-2) : 40 - 54
  • [29] Influence of microstructure on the abrasive edge wear of WC-Co hardmetals
    Krakhmalev, P. V.
    Rodil, T. Adeva
    Bergstrom, J.
    [J]. WEAR, 2007, 263 : 240 - 245
  • [30] CORROSION, EROSION CORROSION, AND THE FLEXURAL STRENGTH OF WC-CO HARDMETALS
    TOMLINSON, WJ
    MOLYNEUX, ID
    [J]. JOURNAL OF MATERIALS SCIENCE, 1991, 26 (06) : 1605 - 1608