Convex rearrangements, generalized Lorenz curves, and correlated Gaussian data

被引:5
|
作者
Davydov, Youri
Khoshnevisan, Davar
Shi, Zhan
Zitikis, Ricardas [1 ]
机构
[1] Univ Western Ontario, Dept Stat & Actuarial Sci, London, ON N6A 5B7, Canada
[2] Univ Sci & Tech Lille Flandres Artois, Lab Stat & Probabil, F-59655 Villeneuve Dascq, France
[3] Univ Utah, Dept Math, Salt Lake City, UT 84112 USA
[4] Univ Paris 06, Probabil Lab, F-75252 Paris 05, France
关键词
convex rearrangements; Lorenz curves; Gini indices; fractional Brownian motion;
D O I
10.1016/j.jspi.2006.06.032
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We propose a statistical index for measuring the fluctuations of a stochastic process. This index is based on the generalized Lorenz curves and (modified) Gini indices of econometric theory. When is a fractional Brownian motion with Hurst index alpha is an element of (0, 1), we develop a complete picture of the asymptotic theory of our index. In particular, we show that the asymptotic behavior of our proposed index depends critically on whether alpha is an element of (0, (3)/(4)), alpha = (3)/(4), or alpha is an element of (3)/(4), 1). Furthermore, in the first two cases, there is a Gaussian limit law, while the third case has an explicit limit law that is in the second Wiener chaos. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:915 / 934
页数:20
相关论文
共 50 条
  • [41] Joint Regression Analysis of Correlated Data Using Gaussian Copulas
    Song, Peter X. -K.
    Li, Mingyao
    Yuan, Ying
    [J]. BIOMETRICS, 2009, 65 (01) : 60 - 68
  • [43] Generalized Gaussian Process Regression Model for Non-Gaussian Functional Data
    Wang, Bo
    Shi, Jian Qing
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2014, 109 (507) : 1123 - 1133
  • [44] PREDICTION AND CREATION OF SMOOTH CURVES FOR TEMPORALLY CORRELATED LONGITUDINAL DATA
    DONNELLY, CA
    LAIRD, NM
    WARE, JH
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1995, 90 (431) : 984 - 989
  • [45] A flexible cure rate model for spatially correlated survival data based on generalized extreme value distribution and Gaussian process priors
    Li, Dan
    Wang, Xia
    Dey, Dipak K.
    [J]. BIOMETRICAL JOURNAL, 2016, 58 (05) : 1178 - 1197
  • [46] Generalized probabilistic principal component analysis of correlated data
    Gu, Mengyang
    Shen, Weining
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2020, 21
  • [47] Ince-Gaussian beams in the generalized Lorenz-Mie theory through finite series Laguerre-Gaussian beam shape coefficients
    Votto, Luiz Felipe
    Chafiq, Abdelghani
    Gouesbet, Gerard
    Ambrosio, Leonardo Andre
    Belafhal, Abdelmajid
    [J]. JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2023, 302
  • [48] Preserving monotone or convex data using quintic trigonometric Bezier curves
    Mahzir, Salwa Syazwani
    Misro, Md Yushalify
    Miura, Kenjiro T.
    [J]. AIMS MATHEMATICS, 2024, 9 (03): : 5971 - 5994
  • [49] Generalized Lyapunov exponent and transmission statistics in one-dimensional Gaussian correlated potentials
    Gurevich, E.
    Iomin, A.
    [J]. PHYSICAL REVIEW E, 2011, 83 (01)
  • [50] Approximate Gibbsian structure in strongly correlated point fields and generalized Gaussian zero ensembles
    Gangopadhyay, Ujan
    Ghosh, Subhroshekhar
    Tan, Kin Aun
    [J]. COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2024, 77 (08) : 3427 - 3519