Convex rearrangements, generalized Lorenz curves, and correlated Gaussian data

被引:5
|
作者
Davydov, Youri
Khoshnevisan, Davar
Shi, Zhan
Zitikis, Ricardas [1 ]
机构
[1] Univ Western Ontario, Dept Stat & Actuarial Sci, London, ON N6A 5B7, Canada
[2] Univ Sci & Tech Lille Flandres Artois, Lab Stat & Probabil, F-59655 Villeneuve Dascq, France
[3] Univ Utah, Dept Math, Salt Lake City, UT 84112 USA
[4] Univ Paris 06, Probabil Lab, F-75252 Paris 05, France
关键词
convex rearrangements; Lorenz curves; Gini indices; fractional Brownian motion;
D O I
10.1016/j.jspi.2006.06.032
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We propose a statistical index for measuring the fluctuations of a stochastic process. This index is based on the generalized Lorenz curves and (modified) Gini indices of econometric theory. When is a fractional Brownian motion with Hurst index alpha is an element of (0, 1), we develop a complete picture of the asymptotic theory of our index. In particular, we show that the asymptotic behavior of our proposed index depends critically on whether alpha is an element of (0, (3)/(4)), alpha = (3)/(4), or alpha is an element of (3)/(4), 1). Furthermore, in the first two cases, there is a Gaussian limit law, while the third case has an explicit limit law that is in the second Wiener chaos. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:915 / 934
页数:20
相关论文
共 50 条
  • [21] GAUSSIAN ESTIMATION FOR CORRELATED BINOMIAL DATA
    CROWDER, M
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1985, 47 (02): : 229 - 237
  • [22] On the critical curves of the pinning and copolymer models in correlated Gaussian environment
    Berger, Quentin
    Poisat, Julien
    [J]. ELECTRONIC JOURNAL OF PROBABILITY, 2015, 20 : 1 - 35
  • [23] Approximate Bayesian computation for Lorenz curves from grouped data
    Kobayashi, Genya
    Kakamu, Kazuhiko
    [J]. COMPUTATIONAL STATISTICS, 2019, 34 (01) : 253 - 279
  • [24] Approximate Bayesian computation for Lorenz curves from grouped data
    Genya Kobayashi
    Kazuhiko Kakamu
    [J]. Computational Statistics, 2019, 34 : 253 - 279
  • [25] Identification of a Locally Self-similar Gaussian Process by Using Convex Rearrangements
    A. Philippe
    E. Thilly
    [J]. Methodology And Computing In Applied Probability, 2002, 4 (2) : 195 - 209
  • [26] ASYMPTOTICALLY DISTRIBUTION-FREE STATISTICAL-INFERENCE FOR GENERALIZED LORENZ CURVES
    BISHOP, JA
    CHAKRABORTI, S
    THISTLE, PD
    [J]. REVIEW OF ECONOMICS AND STATISTICS, 1989, 71 (04) : 725 - 727
  • [27] Convex Parameter Estimation of Perturbed Multivariate Generalized Gaussian Distributions
    Ouzir, Nora
    Pascal, Frederic
    Pesquet, Jean-Christophe
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2024, 72 : 4132 - 4146
  • [28] Modified Gaussian estimation for correlated binary data
    Zhang, Xuemao
    Paul, Sudhir
    [J]. BIOMETRICAL JOURNAL, 2013, 55 (06) : 885 - 898
  • [29] Gaussian kernel with correlated variables for incomplete data
    Choi, Jeongsub
    Son, Youngdoo
    Jeong, Myong K.
    [J]. ANNALS OF OPERATIONS RESEARCH, 2023,
  • [30] A Generalized Gaussian Coherent Scatterer Model for Correlated SAR Texture
    Yue, Dong-Xiao
    Xu, Feng
    Frery, Alejandro C.
    Jin, Ya-Qiu
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2020, 58 (04): : 2947 - 2964