Exploiting CRISPR-Cas to manipulate Enterococcus faecalis populations

被引:33
|
作者
Hullahalli, Karthik [1 ]
Rodrigues, Marinelle [1 ]
Palmer, Kelli L. [1 ]
机构
[1] Univ Texas Dallas, Dept Biol Sci, Richardson, TX 75083 USA
来源
ELIFE | 2017年 / 6卷
基金
美国国家卫生研究院;
关键词
STREPTOCOCCUS-FAECALIS; VANCOMYCIN RESISTANCE; PHEROMONE RESPONSE; GENOME ANALYSIS; PLASMID PAD1; RNA; SYSTEM; STRAIN; SEQUENCE; GENES;
D O I
10.7554/eLife.26664
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
CRISPR-Cas provides a barrier to horizontal gene transfer in prokaryotes. It was previously observed that functional CRISPR-Cas systems are absent from multidrug-resistant (MDR) Enterococcus faecalis, which only possess an orphan CRISPR locus, termed CRISPR2, lacking cas genes. Here, we investigate how the interplay between CRISPR-Cas genome defense and antibiotic selection for mobile genetic elements shapes in vitro E. faecalis populations. We demonstrate that CRISPR2 can be reactivated for genome defense in MDR strains. Interestingly, we observe that E. faecalis transiently maintains CRISPR targets despite active CRISPR-Cas systems. Subsequently, if selection for the CRISPR target is present, toxic CRISPR spacers are lost over time, while in the absence of selection, CRISPR targets are lost over time. We find that forced maintenance of CRISPR targets induces a fitness cost that can be exploited to alter heterogeneous E. faecalis populations.
引用
收藏
页数:23
相关论文
共 50 条
  • [41] Mutagenesis techniques for evolutionary engineering of microbes - exploiting CRISPR-Cas, oligonucleotides, recombinases, and polymerases
    Zimmermann, Anna
    Prieto-Vivas, Julian E.
    Voordeckers, Karin
    Bi, Changhao
    Verstrepen, Kevin J.
    TRENDS IN MICROBIOLOGY, 2024, 32 (09) : 884 - 901
  • [42] Exploiting heterologous and endogenous CRISPR-Cas systems for genome editing in the probiotic Clostridium butyricum
    Zhou, Xiuqing
    Wang, Xiaolu
    Luo, Huiying
    Wang, Yaru
    Wang, Yuan
    Tu, Tao
    Qin, Xing
    Su, Xiaoyun
    Bai, Yingguo
    Yao, Bin
    Huang, Huoqing
    Zhang, Jie
    BIOTECHNOLOGY AND BIOENGINEERING, 2021, 118 (07) : 2448 - 2459
  • [43] Potential of the CRISPR-Cas system for improved parasite diagnosis CRISPR-Cas mediated diagnosis in parasitic infections
    You, Hong
    Gordon, Catherine A.
    MacGregor, Skye R.
    Cai, Pengfei
    McManus, Donald P.
    BIOESSAYS, 2022, 44 (04)
  • [44] CRISPR-Cas molecular beacons as tool for studies of assembly of CRISPR-Cas effector complexes and their interactions with DNA
    Mekler, Vladimir
    Kuznedelov, Konstantin
    Minakhin, Leonid
    Murugan, Karthik
    Sashital, Dipali G.
    Severinov, Konstantin
    CRISPR-CAS ENZYMES, 2019, 616 : 337 - 363
  • [45] Characterization of Cas proteins for CRISPR-Cas editing in streptomycetes
    Yeo, Wan Lin
    Heng, Elena
    Tan, Lee Ling
    Lim, Yi Wee
    Lim, Yee Hwee
    Hoon, Shawn
    Zhao, Huimin
    Zhang, Mingzi M.
    Wong, Fong Tian
    BIOTECHNOLOGY AND BIOENGINEERING, 2019, 116 (09) : 2330 - 2338
  • [46] Applications of CRISPR-Cas systems in neuroscience
    Heidenreich, Matthias
    Zhang, Feng
    NATURE REVIEWS NEUROSCIENCE, 2016, 17 (01) : 36 - 44
  • [47] CRISPR-Cas Controls Cryptic Prophages
    Song, Sooyeon
    Semenova, Ekaterina
    Severinov, Konstantin
    Fernandez-Garcia, Laura
    Benedik, Michael J.
    Maeda, Toshinari
    Wood, Thomas K.
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (24)
  • [48] Variability in the durability of CRISPR-Cas immunity
    Chabas, Helene
    Nicot, Antoine
    Meaden, Sean
    Westra, Edze R.
    Tremblay, Denise M.
    Pradier, Lea
    Lion, Sebastien
    Moineau, Sylvain
    Gandon, Sylvain
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2019, 374 (1772)
  • [49] Establishing CRISPR-Cas Technology in Pakistan
    Naeem, Mohammad Abdul
    CRISPR JOURNAL, 2021, 4 (04): : 467 - 468
  • [50] Changing DNA specifically CRISPR-Cas
    Tetsch, Larissa
    Boehm, Hartmut
    Hartung, Markus
    CHEMIE IN UNSERER ZEIT, 2017, 51 (05) : 338 - 343