Exploiting CRISPR-Cas to manipulate Enterococcus faecalis populations

被引:33
|
作者
Hullahalli, Karthik [1 ]
Rodrigues, Marinelle [1 ]
Palmer, Kelli L. [1 ]
机构
[1] Univ Texas Dallas, Dept Biol Sci, Richardson, TX 75083 USA
来源
ELIFE | 2017年 / 6卷
基金
美国国家卫生研究院;
关键词
STREPTOCOCCUS-FAECALIS; VANCOMYCIN RESISTANCE; PHEROMONE RESPONSE; GENOME ANALYSIS; PLASMID PAD1; RNA; SYSTEM; STRAIN; SEQUENCE; GENES;
D O I
10.7554/eLife.26664
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
CRISPR-Cas provides a barrier to horizontal gene transfer in prokaryotes. It was previously observed that functional CRISPR-Cas systems are absent from multidrug-resistant (MDR) Enterococcus faecalis, which only possess an orphan CRISPR locus, termed CRISPR2, lacking cas genes. Here, we investigate how the interplay between CRISPR-Cas genome defense and antibiotic selection for mobile genetic elements shapes in vitro E. faecalis populations. We demonstrate that CRISPR2 can be reactivated for genome defense in MDR strains. Interestingly, we observe that E. faecalis transiently maintains CRISPR targets despite active CRISPR-Cas systems. Subsequently, if selection for the CRISPR target is present, toxic CRISPR spacers are lost over time, while in the absence of selection, CRISPR targets are lost over time. We find that forced maintenance of CRISPR targets induces a fitness cost that can be exploited to alter heterogeneous E. faecalis populations.
引用
收藏
页数:23
相关论文
共 50 条
  • [31] Metagenomics: Mining for CRISPR-Cas
    York A.
    Nature Reviews Microbiology, 2017, 15 (3) : 133 - 133
  • [32] CRISPR-Cas changing biology?
    Janella Baxter
    Biology & Philosophy, 2019, 34
  • [33] CRISPR-mediated removal of antibiotic resistance genes in Enterococcus faecalis populations
    Rodrigues, Marinelle
    Hullahalli, Karthik
    Palmer, Kelli
    FASEB JOURNAL, 2017, 31
  • [34] CRISPR-Cas: Adapting to change
    Jackson, Simon A.
    McKenzie, Rebecca E.
    Fagerlund, Robert D.
    Kieper, Sebastian N.
    Fineran, Peter C.
    Brouns, Stan J. J.
    SCIENCE, 2017, 356 (6333)
  • [35] CRISPR-Cas in Streptococcus pyogenes
    Le Rhun, Anais
    Escalera-Maurer, Andres
    Bratovic, Majda
    Charpentier, Emmanuelle
    RNA BIOLOGY, 2019, 16 (04) : 380 - 389
  • [36] CRISPR-Cas goes RNA
    Larochelle, Stephane
    NATURE METHODS, 2018, 15 (05) : 312 - 312
  • [37] Adaptation in CRISPR-Cas Systems
    Sternberg, Samuel H.
    Richter, Hagen
    Charpentier, Emmanuelle
    Qimron, Udi
    MOLECULAR CELL, 2016, 61 (06) : 797 - 808
  • [38] CRISPR-Cas Systems in Prokaryotes
    Burmistrz, Michal
    Pyrc, Krzysztof
    POLISH JOURNAL OF MICROBIOLOGY, 2015, 64 (03) : 193 - 202
  • [39] CRISPR-Cas immunity in prokaryotes
    Marraffini, Luciano A.
    NATURE, 2015, 526 (7571) : 55 - 61
  • [40] Current understanding of the cyanobacterial CRISPR-Cas systems and development of the synthetic CRISPR-Cas systems for cyanobacteria
    Pattharaprachayakul, Napisa
    Lee, Mieun
    Incharoensakdi, Aran
    Woo, Han Min
    ENZYME AND MICROBIAL TECHNOLOGY, 2020, 140