Critical points of solutions of sub-elliptic equations on the Heisenberg group

被引:0
|
作者
Liu, Hairong [1 ]
Wu, Hui [2 ]
机构
[1] Nanjing Forestry Univ, Sch Sci, Nanjing 210037, Peoples R China
[2] Qufu Normal Univ, Sch Math Sci, Qufu 273165, Shandong, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Critical point; Star-shaped domain; Heisenberg group; Green function; CRITICAL SETS;
D O I
10.1016/j.jmaa.2020.124579
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper concerns the critical points of a class of degenerate elliptic operators. We prove that the nonexistence of critical point of the Green function for the Kohn-Laplacian of an H-star-shaped region on the first Heisenberg group. Moreover, we prove that solutions to a class of semi-linear degenerate elliptic equations on an H-star-shaped ring have no critical point. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] LIOUVILLE TYPE THEOREMS FOR KIRCHHOFF SUB-ELLIPTIC EQUATIONS INVOLVING Δλ-OPERATORS
    Thi Thu Huong Nguyen
    Dao Trong Quyet
    Thi Hien Anh Vu
    TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2023, 62 (01) : 327 - 340
  • [42] Gradient regularity for elliptic equations in the Heisenberg group
    Mingione, Giuseppe
    Zatorska-Goldstein, Anna
    Zhong, Xiao
    ADVANCES IN MATHEMATICS, 2009, 222 (01) : 62 - 129
  • [43] Critical Group Estimates for Nonregular Critical Points of Functionals Associated With Quasilinear Elliptic Equations
    Cingolani S.
    Degiovanni M.
    Vannella G.
    Journal of Elliptic and Parabolic Equations, 2015, 1 (1) : 75 - 87
  • [44] Anisotropic estimates for sub-elliptic operators
    John BLAND
    Tom DUCHAMP
    Science in China(Series A:Mathematics), 2008, (04) : 509 - 522
  • [45] REALMS OF MATHEMATICS - ELLIPTIC, HYPERBOLIC, PARABOLIC, SUB-ELLIPTIC
    STRICHARTZ, RS
    MATHEMATICAL INTELLIGENCER, 1987, 9 (03): : 56 - 64
  • [46] Anisotropic estimates for sub-elliptic operators
    John Bland
    Tom Duchamp
    Science in China Series A: Mathematics, 2008, 51 : 509 - 522
  • [47] Anisotropic estimates for sub-elliptic operators
    Bland, John
    Duchamp, Tom
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2008, 51 (04): : 509 - 522
  • [48] Critical semilinear equations on the Heisenberg group
    Lanconelli E.
    Annali dell’Università di Ferrara, 1999, 45 (1): : 187 - 195
  • [49] CRITICAL POINTS OF SOLUTIONS TO A KIND OF LINEAR ELLIPTIC EQUATIONS IN MULTIPLY CONNECTED DOMAINS
    Deng, Haiyun
    Liu, Hairong
    Yang, Xiaoping
    ISRAEL JOURNAL OF MATHEMATICS, 2022, 249 (02) : 935 - 971
  • [50] Critical points of solutions to a kind of linear elliptic equations in multiply connected domains
    Haiyun Deng
    Hairong Liu
    Xiaoping Yang
    Israel Journal of Mathematics, 2022, 249 : 935 - 971