Anisotropic estimates for sub-elliptic operators

被引:0
|
作者
John BLAND
Tom DUCHAMP
机构
[1] Canada
[2] Department of Mathematics University of Toronto
[3] Box 354350
[4] University of Washington
[5] WA 98195-4350
[6] Seattle
[7] Ontario M5S3G3
[8] USA
基金
加拿大自然科学与工程研究理事会;
关键词
sub-elliptic operators; anisotropic estimates; anisotropic Sobolev spaces; Rumin complex; contact manifolds;
D O I
暂无
中图分类号
O189.33 [];
学科分类号
摘要
In the 1970’s,Folland and Stein studied a family of subelliptic scalar operators Lwhich arise naturally in the(?)-complex.They introduced weighted Sobolev spaces as the natural spaces for this complex,and then obtained sharp estimates for(?)b in these spaces using integral kernels and approximate inverses.In the 1990’s,Rumin introduced a differential complex for compact contact manifolds,showed that the Folland-Stein operators are central to the analysis for the corresponding Laplace operator,and derived the necessary estimates for the Laplacian from the Folland Stein analysis. In this paper,we give a self-contained derivation of sharp estimates in the anisotropic Folland-Stein spaces for the operators studied by Rumin using integration by parts and a modified approach to bootstrapping.
引用
收藏
页码:509 / 522
页数:14
相关论文
共 50 条
  • [1] Anisotropic estimates for sub-elliptic operators
    John Bland
    Tom Duchamp
    Science in China Series A: Mathematics, 2008, 51 : 509 - 522
  • [2] Anisotropic estimates for sub-elliptic operators
    Bland, John
    Duchamp, Tom
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2008, 51 (04): : 509 - 522
  • [3] Estimates of Dirichlet eigenvalues for a class of sub-elliptic operators
    Chen, Hua
    Chen, Hong-Ge
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2021, 122 (06) : 808 - 847
  • [4] Schauder estimates for sub-elliptic equations
    Cristian E. Gutiérrez
    Ermanno Lanconelli
    Journal of Evolution Equations, 2009, 9
  • [5] Schauder estimates for sub-elliptic equations
    Gutierrez, Cristian E.
    Lanconelli, Ermanno
    JOURNAL OF EVOLUTION EQUATIONS, 2009, 9 (04) : 707 - 726
  • [6] PARTIAL SCHAUDER ESTIMATES FOR A SUB-ELLIPTIC EQUATION
    魏娜
    蒋永生
    吴永洪
    Acta Mathematica Scientia(English Series), 2016, 36 (03) : 945 - 956
  • [7] PARTIAL SCHAUDER ESTIMATES FOR A SUB-ELLIPTIC EQUATION
    Wei, Na
    Jiang, Yongsheng
    Wu, Yonghong
    ACTA MATHEMATICA SCIENTIA, 2016, 36 (03) : 945 - 956
  • [8] SUB-ELLIPTIC ESTIMATES FOR THE OBLIQUE DERIVATIVE PROBLEM
    WINZELL, B
    MATHEMATICA SCANDINAVICA, 1978, 43 (01) : 169 - 176
  • [9] A LOCALIZATION THEOREM FOR (DELTA,P)-SUB-ELLIPTIC ESTIMATES
    KOLAKOWS.H
    BULLETIN DE L ACADEMIE POLONAISE DES SCIENCES-SERIE DES SCIENCES MATHEMATIQUES ASTRONOMIQUES ET PHYSIQUES, 1969, 17 (12): : 815 - &
  • [10] Hamilton Type Gradient Estimate for the Sub-Elliptic Operators
    Qian, Bin
    POTENTIAL ANALYSIS, 2015, 42 (02) : 607 - 615