Anisotropic estimates for sub-elliptic operators

被引:0
|
作者
John BLAND
Tom DUCHAMP
机构
[1] Canada
[2] Department of Mathematics University of Toronto
[3] Box 354350
[4] University of Washington
[5] WA 98195-4350
[6] Seattle
[7] Ontario M5S3G3
[8] USA
基金
加拿大自然科学与工程研究理事会;
关键词
sub-elliptic operators; anisotropic estimates; anisotropic Sobolev spaces; Rumin complex; contact manifolds;
D O I
暂无
中图分类号
O189.33 [];
学科分类号
摘要
In the 1970’s,Folland and Stein studied a family of subelliptic scalar operators Lwhich arise naturally in the(?)-complex.They introduced weighted Sobolev spaces as the natural spaces for this complex,and then obtained sharp estimates for(?)b in these spaces using integral kernels and approximate inverses.In the 1990’s,Rumin introduced a differential complex for compact contact manifolds,showed that the Folland-Stein operators are central to the analysis for the corresponding Laplace operator,and derived the necessary estimates for the Laplacian from the Folland Stein analysis. In this paper,we give a self-contained derivation of sharp estimates in the anisotropic Folland-Stein spaces for the operators studied by Rumin using integration by parts and a modified approach to bootstrapping.
引用
收藏
页码:509 / 522
页数:14
相关论文
共 50 条
  • [31] The dirichlet problems for a class of semilinear sub-elliptic equations
    Xu, CJ
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1999, 37 (08) : 1039 - 1049
  • [32] Holder continuity for nonlinear sub-elliptic systems with sub-quadratic growth
    Wang, Jialin
    Liao, Dongni
    Guo, Zhenhua
    Yu, Zefeng
    Wu, Shimin
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2015, 109 (01) : 27 - 42
  • [33] Hölder continuity for nonlinear sub-elliptic systems with sub-quadratic growth
    Jialin Wang
    Dongni Liao
    Zhenhua Guo
    Zefeng Yu
    Shimin Wu
    Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas, 2015, 109 : 27 - 42
  • [34] Strong Unique Continuation of Sub-elliptic Operator on the Heisenberg Group
    Hairong LIU
    Xiaoping YANG
    Chinese Annals of Mathematics(Series B), 2013, 34 (03) : 461 - 478
  • [35] Critical points of solutions of sub-elliptic equations on the Heisenberg group
    Liu, Hairong
    Wu, Hui
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 494 (01)
  • [36] On the nonexistence of stable solutions of sub-elliptic systems with negative exponents
    Anh Tuan Duong
    Do Lan
    Phuong Quynh Le
    Phuong Thao Nguyen
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2019, 64 (12) : 2117 - 2129
  • [37] Liouville-type theorems for sub-elliptic systems involving Δλ-Laplacian
    Phuong Le
    Anh Tuan Duong
    Nhu Thang Nguyen
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2021, 66 (12) : 2131 - 2140
  • [38] Strong unique continuation of sub-elliptic operator on the Heisenberg group
    Hairong Liu
    Xiaoping Yang
    Chinese Annals of Mathematics, Series B, 2013, 34 : 461 - 478
  • [39] Strong unique continuation of sub-elliptic operator on the Heisenberg Group
    Liu, Hairong
    Yang, Xiaoping
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2013, 34 (03) : 461 - 478