Anisotropic estimates for sub-elliptic operators

被引:0
|
作者
John BLAND
Tom DUCHAMP
机构
[1] Canada
[2] Department of Mathematics University of Toronto
[3] Box 354350
[4] University of Washington
[5] WA 98195-4350
[6] Seattle
[7] Ontario M5S3G3
[8] USA
基金
加拿大自然科学与工程研究理事会;
关键词
sub-elliptic operators; anisotropic estimates; anisotropic Sobolev spaces; Rumin complex; contact manifolds;
D O I
暂无
中图分类号
O189.33 [];
学科分类号
摘要
In the 1970’s,Folland and Stein studied a family of subelliptic scalar operators Lwhich arise naturally in the(?)-complex.They introduced weighted Sobolev spaces as the natural spaces for this complex,and then obtained sharp estimates for(?)b in these spaces using integral kernels and approximate inverses.In the 1990’s,Rumin introduced a differential complex for compact contact manifolds,showed that the Folland-Stein operators are central to the analysis for the corresponding Laplace operator,and derived the necessary estimates for the Laplacian from the Folland Stein analysis. In this paper,we give a self-contained derivation of sharp estimates in the anisotropic Folland-Stein spaces for the operators studied by Rumin using integration by parts and a modified approach to bootstrapping.
引用
收藏
页码:509 / 522
页数:14
相关论文
共 50 条
  • [41] THE DIRICHLET PROBLEM FOR A SUB-ELLIPTIC EQUATION WITH SINGULAR NONLINEARITY ON THE HEISENBERG GROUP
    An, Yu-Cheng
    Liu, Hairong
    Tian, Long
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2020, 14 (01): : 67 - 82
  • [42] Lipschitz regularity of sub-elliptic harmonic maps into CAT(0) space
    Assimos, Renan
    Gui, Yaoting
    Jost, Juergen
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2024, 2024 (817): : 213 - 238
  • [43] The polynomial growth solutions to some sub-elliptic equations on the Heisenberg group
    Liu, Hairong
    Long, Tian
    Yang, Xiaoping
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2019, 21 (01)
  • [44] Horizontal convex envelope in the Heisenberg group and applications to sub-elliptic equations
    Liu, Qing
    Zhou, Xiaodan
    ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA-CLASSE DI SCIENZE, 2021, 22 (04) : 2039 - 2076
  • [45] Comparison Principles for Some Fully Nonlinear Sub-Elliptic Equations on the Heisenberg Group
    YanYan Li
    Bo Wang
    Analysis in Theory and Applications, 2019, 35 (03) : 312 - 334
  • [46] The Dirichlet condition for the conformable fractional sub-elliptic equation on the Heisenberg group
    Izadjoo, M.
    Akbari, M.
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2024, 69 (01) : 47 - 61
  • [47] UNIVERSAL INEQUALITIES FOR EIGENVALUES OF A SYSTEM OF SUB-ELLIPTIC EQUATIONS ON HEISENBERG GROUP
    Du, Feng
    Wu, Chuanxi
    Li, Guanghan
    Xia, Changyu
    KODAI MATHEMATICAL JOURNAL, 2015, 38 (02) : 437 - 450
  • [48] Anisotropic error estimates for elliptic problems
    L. Formaggia
    S. Perotto
    Numerische Mathematik, 2003, 94 : 67 - 92
  • [49] Optimal partial regularity for sub-elliptic systems with sub-quadratic growth in Carnot groups
    Wang, Jialin
    Liao, Dongni
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (04) : 2499 - 2519
  • [50] Anisotropic error estimates for elliptic problems
    Formaggia, L
    Perotto, S
    NUMERISCHE MATHEMATIK, 2003, 94 (01) : 67 - 92