Flexoelectric fluid membrane vesicles in spherical confinement

被引:2
|
作者
Abtahi, Niloufar [1 ]
Bouzar, Lila [2 ]
Saidi-Amroun, Nadia [2 ]
Muller, Martin Michael [3 ]
机构
[1] Eastern Mediterranean Univ Famagusta, Fac Arts & Sci, Dept Phys, Via Mersin 10, Famagusta, North Cyprus, Turkey
[2] Univ Sci & Technol Houari Boumed, Lab Phys Mat, BP 32 El Alia Bab Ezzouar, Algiers 16111, Algeria
[3] Univ Lorraine, UMR 7019, Lab Phys & Chim Theor, 1 Blvd Arago, F-57070 Metz, France
关键词
87; 16; D-; 10; Pq; 77; 55; -g; GIANT VESICLES; CURVATURE; DYNAMICS; TENSION; SHAPE;
D O I
10.1209/0295-5075/131/18001
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The morphology of spherically confined flexoelectric fluid membrane vesicles in an external uniform electric field is studied numerically. Due to the deformations induced by the confinement, the membrane becomes polarized resulting in an interaction with the external field. The equilibrium shapes of the vesicle without electric field can be classified in a geometrical phase diagram as a function of scaled area and reduced volume (Kahraman O. et al., EPL, 97 (2012) 68008; Kahraman O. et al., New. J. Phys., 14 (2012) 095021). When the area of the membrane is only slightly larger than the area of the confining sphere, a single axisymmetric invagination appears. A non-vanishing electric field induces an additional elongation of the confined vesicle which is either perpendicular or parallel depending on the sign of the electric field parameter. Higher values of the surface area or the electric field parameter can reduce the symmetry of the system leading to more complex folding. We present the resulting shapes and show that transition lines are shifted in the presence of an electric field. The obtained folding patterns could be of interest for biophysical and technological applications alike.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] CONFINEMENT OF A SPHERICAL DIELECTRIC RETROREFLECTOR
    BERNABEU, E
    DELGADO, M
    KOWALCZYK, M
    OPTIK, 1994, 97 (03): : 115 - 120
  • [32] The physics of spherical confinement systems
    Robinson, DC
    PLASMA PHYSICS AND CONTROLLED FUSION, 1999, 41 : A143 - A157
  • [33] Seeing spots in cellular membranes: plasma membrane vesicles with fluid domains
    Baumgart, T
    Hammond, AT
    Hess, ST
    Holowka, D
    Baird, B
    Webb, WW
    BIOPHYSICAL JOURNAL, 2005, 88 (01) : 76A - 76A
  • [34] Magnetic control of flexoelectric domains in a nematic fluid
    Salamon, Peter
    Eber, Nandor
    Buka, Agnes
    Ostapenko, Tanya
    Doelle, Sarah
    Stannarius, Ralf
    SOFT MATTER, 2014, 10 (25) : 4487 - 4497
  • [35] A flexoelectric spherical microshell model incorporating the strain gradient effect
    Qi, Lu
    Fu, Guangyang
    Zhou, Shenjie
    APPLIED MATHEMATICAL MODELLING, 2019, 75 : 692 - 708
  • [36] Spherical reconstruction of membrane proteins reconstituted in vesicles:: A test with IP3 receptors
    Jiang, QX
    Thrower, EC
    Chester, DW
    Ehrlich, BE
    Sigworth, FJ
    BIOPHYSICAL JOURNAL, 2001, 80 (01) : 371A - 371A
  • [37] Numerical predictions for the effective properties of flexoelectric composites with spherical inclusion
    Yicong Zheng
    Liangliang Chu
    Guansuo Dui
    Xiang Zhu
    Acta Mechanica, 2022, 233 : 2093 - 2106
  • [38] Numerical predictions for the effective properties of flexoelectric composites with spherical inclusion
    Zheng, Yicong
    Chu, Liangliang
    Dui, Guansuo
    Zhu, Xiang
    ACTA MECHANICA, 2022, 233 (05) : 2093 - 2106
  • [39] Single-particle dynamics in a low-Reynolds-number fluid under spherical confinement
    Chen, Gaofeng
    Jiang, Xikai
    JOURNAL OF FLUID MECHANICS, 2023, 969
  • [40] Topological instabilities of spherical vesicles
    Manyuhina, O. V.
    Fasolino, A.
    Christianen, P. C. M.
    Katsnelson, M. I.
    PHYSICAL REVIEW E, 2009, 80 (01):