Flexoelectric fluid membrane vesicles in spherical confinement

被引:2
|
作者
Abtahi, Niloufar [1 ]
Bouzar, Lila [2 ]
Saidi-Amroun, Nadia [2 ]
Muller, Martin Michael [3 ]
机构
[1] Eastern Mediterranean Univ Famagusta, Fac Arts & Sci, Dept Phys, Via Mersin 10, Famagusta, North Cyprus, Turkey
[2] Univ Sci & Technol Houari Boumed, Lab Phys Mat, BP 32 El Alia Bab Ezzouar, Algiers 16111, Algeria
[3] Univ Lorraine, UMR 7019, Lab Phys & Chim Theor, 1 Blvd Arago, F-57070 Metz, France
关键词
87; 16; D-; 10; Pq; 77; 55; -g; GIANT VESICLES; CURVATURE; DYNAMICS; TENSION; SHAPE;
D O I
10.1209/0295-5075/131/18001
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The morphology of spherically confined flexoelectric fluid membrane vesicles in an external uniform electric field is studied numerically. Due to the deformations induced by the confinement, the membrane becomes polarized resulting in an interaction with the external field. The equilibrium shapes of the vesicle without electric field can be classified in a geometrical phase diagram as a function of scaled area and reduced volume (Kahraman O. et al., EPL, 97 (2012) 68008; Kahraman O. et al., New. J. Phys., 14 (2012) 095021). When the area of the membrane is only slightly larger than the area of the confining sphere, a single axisymmetric invagination appears. A non-vanishing electric field induces an additional elongation of the confined vesicle which is either perpendicular or parallel depending on the sign of the electric field parameter. Higher values of the surface area or the electric field parameter can reduce the symmetry of the system leading to more complex folding. We present the resulting shapes and show that transition lines are shifted in the presence of an electric field. The obtained folding patterns could be of interest for biophysical and technological applications alike.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Membrane stretching elasticity and thermal shape fluctuations of nearly spherical lipid vesicles
    Bivas, Isak
    Tonchev, Nicholay S.
    PHYSICAL REVIEW E, 2019, 100 (02)
  • [22] SHAPE DYNAMICS OF NEARLY SPHERICAL MEMBRANE BOUNDED FLUID CELLS
    PETERSON, MA
    MOLECULAR CRYSTALS AND LIQUID CRYSTALS, 1985, 127 (1-4): : 257 - 272
  • [23] On the contact of a spherical membrane enclosing a fluid with rigid parallel planes
    Nadler, Ben
    INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2010, 45 (03) : 294 - 300
  • [24] Micropipette aspiration of an inflated fluid-filled spherical membrane
    Touqeer Sohail
    Tian Tang
    Ben Nadler
    Zeitschrift für angewandte Mathematik und Physik, 2012, 63 : 737 - 757
  • [25] Micropipette aspiration of an inflated fluid-filled spherical membrane
    Sohail, Touqeer
    Tang, Tian
    Nadler, Ben
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2012, 63 (04): : 737 - 757
  • [26] SPHERICAL GREY VESICLES
    Singh, R.
    Srinivas, S. R.
    Jithendra, K. D.
    BRITISH DENTAL JOURNAL, 2011, 211 (07) : 306 - 306
  • [27] Spherical grey vesicles
    R. Singh
    S. R. Srinivas
    K. D. Jithendra
    British Dental Journal, 2011, 211 : 306 - 306
  • [28] Confinement of a spherical dielectric retroreflector
    Bernabeu, E., 1600, Wissenschaftliche Verlagsgesellschaft, Stuttgart, Germany (97):
  • [29] Clusters of polyhedra in spherical confinement
    Teich, Erin G.
    van Anders, Greg
    Klotsa, Daphne
    Dshemuchadse, Julia
    Glotzer, Sharon C.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2016, 113 (06) : E669 - E678
  • [30] Physics of spherical confinement systems
    Robinson, D.C.
    Plasma Physics and Controlled Fusion, 1999, 41 (Suppl 3A):