On the Yang-Baxter equation and left nilpotent left braces

被引:27
|
作者
Cedo, Ferran [1 ]
Gateva-Ivanova, Tatiana [2 ,3 ]
Smoktunowicz, Agata [4 ]
机构
[1] Univ Autonoma Barcelona, Dept Matemat, E-08193 Barcelona, Spain
[2] Amer Univ Bulgaria, Blagoevgrad 2700, Bulgaria
[3] Bulgarian Acad Sci, Inst Math & Informat, BU-1113 Sofia, Bulgaria
[4] Univ Edinburgh, Sch Math, James Clerk Maxwell Bldg,Kings Bldg, Edinburgh EH9 3JZ, Midlothian, Scotland
关键词
SEMIGROUPS;
D O I
10.1016/j.jpaa.2016.07.014
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study non-degenerate involutive set-theoretic solutions (X, r) of the Yang-Baxter equation, we call them solutions. We prove that the structure group G(X, r) of a finite non-trivial solution (X, r) cannot be an Engel group. It is known that the structure group G(X, r) of a finite multipermutation solution (X, r) is a poly-Z group, thus our result gives a rich source of examples of braided groups and left braces G(X, r) which are poly-Z groups but not Engel groups. We find an explicit relation between the multipermutation level of a left brace and the length of the radical chain A((n+1)) = A((n)) * A introduced by Rump. We also show that a finite solution of the Yang-Baxter equation can be embedded in a convenient way into a finite left brace, or equivalently into a finite involutive braided group. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:751 / 756
页数:6
相关论文
共 50 条
  • [21] Almost simple braces and primitive solutions to the Yang-Baxter equation
    Rump, Wolfgang
    JOURNAL OF ALGEBRA, 2022, 601 : 72 - 86
  • [22] COCYCLIC BRACES AND INDECOMPOSABLE COCYCLIC SOLUTIONS OF THE YANG-BAXTER EQUATION
    Jedlicka, Premysl
    Pilitowska, Agata
    Zamojska-Dzienio, Anna
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2022, 150 (10) : 4223 - 4239
  • [23] Solutions of the Yang-Baxter Equation and Strong Semilattices of Skew Braces
    Catino, Francesco
    Mazzotta, Marzia
    Stefanelli, Paola
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2024, 21 (02)
  • [24] Left-symmetric bialgebras and an analogue of the classical Yang-Baxter equation
    Bai, Chengming
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2008, 10 (02) : 221 - 260
  • [25] HOPF BRACES AND YANG-BAXTER OPERATORS
    Angiono, Ivan
    Galindo, Cesar
    Vendramin, Leandro
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 145 (05) : 1981 - 1995
  • [26] Classical Yang-Baxter equation and left invariant affine geometry on Lie groups
    Diatta, A
    Medina, A
    MANUSCRIPTA MATHEMATICA, 2004, 114 (04) : 477 - 486
  • [27] Deformed solutions of the Yang-Baxter equation associated to dual weak braces
    Mazzotta, Marzia
    Rybolowicz, Bernard
    Stefanelli, Paola
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2024, : 711 - 731
  • [28] Classical Yang-Baxter equation and left invariant affine geometry on lie groups
    Andre Diatta
    Alberto Medina
    manuscripta mathematica, 2004, 114 : 477 - 486
  • [30] Braces and the Yang–Baxter Equation
    Ferran Cedó
    Eric Jespers
    Jan Okniński
    Communications in Mathematical Physics, 2014, 327 : 101 - 116