Deformed solutions of the Yang-Baxter equation associated to dual weak braces

被引:0
|
作者
Mazzotta, Marzia [1 ]
Rybolowicz, Bernard [2 ,3 ]
Stefanelli, Paola [1 ]
机构
[1] Univ Salento, Dipartimento Matemat & Fis Ennio Giorgi, Via Provinciale, I-73100 Lecce, Italy
[2] Heriot Watt Univ, Dept Math, Edinburgh EH14 4AS, Scotland
[3] Maxwell Inst Math Sci, Edinburgh, Scotland
关键词
Yang-Baxter equation; Set-theoretic solution; Inverse semigroup; Clifford semigroup; Skew brace; Brace; Weak brace; SET-THEORETICAL SOLUTIONS; SKEW LEFT BRACES;
D O I
10.1007/s10231-024-01502-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A recent method for acquiring new solutions of the Yang-Baxter equation involves deforming the classical solution associated with a skew brace. In this work, we demonstrate the applicability of this method to a dual weak brace S,+,degrees\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( S,+,\circ \right) $$\end{document} and prove that all elements generating deformed solutions belong precisely to the set Dr(S)={z is an element of S divided by for all a,b is an element of S(a+b)degrees z=a degrees z-z+b degrees z}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {D}_r(S)=\{z \in S \mid \forall a,b \in S \, \, (a+b) \circ z = a\circ z-z+b \circ z\}$$\end{document}, which we term the distributor of S. We show it is a full inverse subsemigroup of S,degrees\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( S, \circ \right) $$\end{document} and prove it is an ideal for certain classes of braces. Additionally, we express the distributor of a brace S in terms of the associativity of the operation <middle dot>\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\cdot $$\end{document}, with degrees\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\circ $$\end{document} representing the circle or adjoint operation. In this context, (Dr(S),+,<middle dot>)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\mathcal {D}_r(S),+,\cdot )$$\end{document} constitutes a Jacobson radical ring contained within S. Furthermore, we explore parameters leading to non-equivalent solutions, emphasizing that even deformed solutions by idempotents may not be equivalent. Lastly, considering S as a strong semilattice [Y,B alpha,phi alpha,beta]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[Y, B_\alpha , \phi _{\alpha ,\beta }]$$\end{document} of skew braces B alpha\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B_\alpha $$\end{document}, we establish that a deformed solution forms a semilattice of solutions on each skew brace B alpha\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B_\alpha $$\end{document} if and only if the semilattice Y is bounded by an element 1 and the deforming element z lies in B1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B_1$$\end{document}.
引用
收藏
页码:711 / 731
页数:21
相关论文
共 50 条
  • [1] Set-theoretic solutions of the Yang-Baxter equation associated to weak braces
    Catino, Francesco
    Mazzotta, Marzia
    Miccoli, Maria Maddalena
    Stefanelli, Paola
    SEMIGROUP FORUM, 2022, 104 (02) : 228 - 255
  • [2] Left Braces: Solutions of the Yang-Baxter Equation
    Cedo, Ferran
    ADVANCES IN GROUP THEORY AND APPLICATIONS, 2018, 5 : 33 - 90
  • [3] Braces and the Yang-Baxter Equation
    Cedo, Ferran
    Jespers, Eric
    Okninski, Jan
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2014, 327 (01) : 101 - 116
  • [4] New simple solutions of the Yang-Baxter equation and solutions associated to simple left braces
    Cedo, F.
    Okninski, J.
    JOURNAL OF ALGEBRA, 2022, 600 : 125 - 151
  • [5] Solutions of the Yang-Baxter equation associated to skew left braces, with applications to racks
    Bachiller, David
    JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2018, 27 (08)
  • [6] Nilpotency of skew braces and multipermutation solutions of the Yang-Baxter equation
    Jespers, E.
    Van Antwerpen, A.
    Vendramin, L.
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2023, 25 (09)
  • [7] Almost simple braces and primitive solutions to the Yang-Baxter equation
    Rump, Wolfgang
    JOURNAL OF ALGEBRA, 2022, 601 : 72 - 86
  • [8] COCYCLIC BRACES AND INDECOMPOSABLE COCYCLIC SOLUTIONS OF THE YANG-BAXTER EQUATION
    Jedlicka, Premysl
    Pilitowska, Agata
    Zamojska-Dzienio, Anna
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2022, 150 (10) : 4223 - 4239
  • [9] Solutions of the Yang-Baxter Equation and Strong Semilattices of Skew Braces
    Catino, Francesco
    Mazzotta, Marzia
    Stefanelli, Paola
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2024, 21 (02)
  • [10] Skew left braces and the Yang-Baxter equation
    Childs, Lindsay N.
    NEW YORK JOURNAL OF MATHEMATICS, 2024, 30 : 649 - 655