A recent method for acquiring new solutions of the Yang-Baxter equation involves deforming the classical solution associated with a skew brace. In this work, we demonstrate the applicability of this method to a dual weak brace S,+,degrees\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( S,+,\circ \right) $$\end{document} and prove that all elements generating deformed solutions belong precisely to the set Dr(S)={z is an element of S divided by for all a,b is an element of S(a+b)degrees z=a degrees z-z+b degrees z}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {D}_r(S)=\{z \in S \mid \forall a,b \in S \, \, (a+b) \circ z = a\circ z-z+b \circ z\}$$\end{document}, which we term the distributor of S. We show it is a full inverse subsemigroup of S,degrees\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( S, \circ \right) $$\end{document} and prove it is an ideal for certain classes of braces. Additionally, we express the distributor of a brace S in terms of the associativity of the operation <middle dot>\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\cdot $$\end{document}, with degrees\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\circ $$\end{document} representing the circle or adjoint operation. In this context, (Dr(S),+,<middle dot>)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\mathcal {D}_r(S),+,\cdot )$$\end{document} constitutes a Jacobson radical ring contained within S. Furthermore, we explore parameters leading to non-equivalent solutions, emphasizing that even deformed solutions by idempotents may not be equivalent. Lastly, considering S as a strong semilattice [Y,B alpha,phi alpha,beta]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[Y, B_\alpha , \phi _{\alpha ,\beta }]$$\end{document} of skew braces B alpha\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B_\alpha $$\end{document}, we establish that a deformed solution forms a semilattice of solutions on each skew brace B alpha\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B_\alpha $$\end{document} if and only if the semilattice Y is bounded by an element 1 and the deforming element z lies in B1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B_1$$\end{document}.