Deformed solutions of the Yang-Baxter equation associated to dual weak braces

被引:0
|
作者
Mazzotta, Marzia [1 ]
Rybolowicz, Bernard [2 ,3 ]
Stefanelli, Paola [1 ]
机构
[1] Univ Salento, Dipartimento Matemat & Fis Ennio Giorgi, Via Provinciale, I-73100 Lecce, Italy
[2] Heriot Watt Univ, Dept Math, Edinburgh EH14 4AS, Scotland
[3] Maxwell Inst Math Sci, Edinburgh, Scotland
关键词
Yang-Baxter equation; Set-theoretic solution; Inverse semigroup; Clifford semigroup; Skew brace; Brace; Weak brace; SET-THEORETICAL SOLUTIONS; SKEW LEFT BRACES;
D O I
10.1007/s10231-024-01502-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A recent method for acquiring new solutions of the Yang-Baxter equation involves deforming the classical solution associated with a skew brace. In this work, we demonstrate the applicability of this method to a dual weak brace S,+,degrees\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( S,+,\circ \right) $$\end{document} and prove that all elements generating deformed solutions belong precisely to the set Dr(S)={z is an element of S divided by for all a,b is an element of S(a+b)degrees z=a degrees z-z+b degrees z}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {D}_r(S)=\{z \in S \mid \forall a,b \in S \, \, (a+b) \circ z = a\circ z-z+b \circ z\}$$\end{document}, which we term the distributor of S. We show it is a full inverse subsemigroup of S,degrees\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( S, \circ \right) $$\end{document} and prove it is an ideal for certain classes of braces. Additionally, we express the distributor of a brace S in terms of the associativity of the operation <middle dot>\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\cdot $$\end{document}, with degrees\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\circ $$\end{document} representing the circle or adjoint operation. In this context, (Dr(S),+,<middle dot>)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\mathcal {D}_r(S),+,\cdot )$$\end{document} constitutes a Jacobson radical ring contained within S. Furthermore, we explore parameters leading to non-equivalent solutions, emphasizing that even deformed solutions by idempotents may not be equivalent. Lastly, considering S as a strong semilattice [Y,B alpha,phi alpha,beta]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[Y, B_\alpha , \phi _{\alpha ,\beta }]$$\end{document} of skew braces B alpha\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B_\alpha $$\end{document}, we establish that a deformed solution forms a semilattice of solutions on each skew brace B alpha\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B_\alpha $$\end{document} if and only if the semilattice Y is bounded by an element 1 and the deforming element z lies in B1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B_1$$\end{document}.
引用
收藏
页码:711 / 731
页数:21
相关论文
共 50 条
  • [21] Set-theoretic solutions of the Yang-Baxter equation, braces and symmetric groups
    Gateva-Ivanova, Tatiana
    ADVANCES IN MATHEMATICS, 2018, 338 : 649 - 701
  • [22] Skew left braces and 2-reductive solutions of the Yang-Baxter equation
    Jedlicka, Premysl
    Pilitowska, Agata
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2024, 228 (04)
  • [23] Retractability of solutions to the Yang-Baxter equation and p-nilpotency of skew braces
    Acri, E.
    Lutowski, R.
    Vendramin, L.
    INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2020, 30 (01) : 91 - 115
  • [24] Solutions of the Yang-Baxter equation associated with a left brace
    Bachiller, David
    Cedo, Ferran
    Jespers, Eric
    JOURNAL OF ALGEBRA, 2016, 463 : 80 - 102
  • [25] Asymmetric product of left braces and simplicity; new solutions of the Yang-Baxter equation
    Bachiller, D.
    Cedo, F.
    Jespers, E.
    Okninski, J.
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2019, 21 (08)
  • [26] On solutions to the twisted Yang-Baxter equation
    Tarasov V.O.
    Journal of Mathematical Sciences, 1997, 85 (1) : 1752 - 1757
  • [27] COCYCLIC SOLUTIONS TO THE YANG-BAXTER EQUATION
    Rump, Wolfgang
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 149 (02) : 471 - 479
  • [28] A family of solutions of the Yang-Baxter equation
    Bachiller, David
    Cedo, Ferran
    JOURNAL OF ALGEBRA, 2014, 412 : 218 - 229
  • [29] MULTIPARAMETER SOLUTIONS OF THE YANG-BAXTER EQUATION
    FEI, SM
    GUO, HY
    SHI, H
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1992, 25 (09): : 2711 - 2720
  • [30] Multipermutation Solutions of the Yang-Baxter Equation
    Gateva-Ivanova, Tatiana
    Cameron, Peter
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2012, 309 (03) : 583 - 621