Deformed solutions of the Yang-Baxter equation associated to dual weak braces

被引:0
|
作者
Mazzotta, Marzia [1 ]
Rybolowicz, Bernard [2 ,3 ]
Stefanelli, Paola [1 ]
机构
[1] Univ Salento, Dipartimento Matemat & Fis Ennio Giorgi, Via Provinciale, I-73100 Lecce, Italy
[2] Heriot Watt Univ, Dept Math, Edinburgh EH14 4AS, Scotland
[3] Maxwell Inst Math Sci, Edinburgh, Scotland
关键词
Yang-Baxter equation; Set-theoretic solution; Inverse semigroup; Clifford semigroup; Skew brace; Brace; Weak brace; SET-THEORETICAL SOLUTIONS; SKEW LEFT BRACES;
D O I
10.1007/s10231-024-01502-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A recent method for acquiring new solutions of the Yang-Baxter equation involves deforming the classical solution associated with a skew brace. In this work, we demonstrate the applicability of this method to a dual weak brace S,+,degrees\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( S,+,\circ \right) $$\end{document} and prove that all elements generating deformed solutions belong precisely to the set Dr(S)={z is an element of S divided by for all a,b is an element of S(a+b)degrees z=a degrees z-z+b degrees z}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {D}_r(S)=\{z \in S \mid \forall a,b \in S \, \, (a+b) \circ z = a\circ z-z+b \circ z\}$$\end{document}, which we term the distributor of S. We show it is a full inverse subsemigroup of S,degrees\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( S, \circ \right) $$\end{document} and prove it is an ideal for certain classes of braces. Additionally, we express the distributor of a brace S in terms of the associativity of the operation <middle dot>\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\cdot $$\end{document}, with degrees\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\circ $$\end{document} representing the circle or adjoint operation. In this context, (Dr(S),+,<middle dot>)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\mathcal {D}_r(S),+,\cdot )$$\end{document} constitutes a Jacobson radical ring contained within S. Furthermore, we explore parameters leading to non-equivalent solutions, emphasizing that even deformed solutions by idempotents may not be equivalent. Lastly, considering S as a strong semilattice [Y,B alpha,phi alpha,beta]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[Y, B_\alpha , \phi _{\alpha ,\beta }]$$\end{document} of skew braces B alpha\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B_\alpha $$\end{document}, we establish that a deformed solution forms a semilattice of solutions on each skew brace B alpha\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B_\alpha $$\end{document} if and only if the semilattice Y is bounded by an element 1 and the deforming element z lies in B1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B_1$$\end{document}.
引用
收藏
页码:711 / 731
页数:21
相关论文
共 50 条
  • [31] Nonstandard solutions of the Yang-Baxter equation
    Giaquinto, A
    Hodges, TJ
    LETTERS IN MATHEMATICAL PHYSICS, 1998, 44 (01) : 67 - 75
  • [32] UNUSUAL SOLUTIONS TO THE YANG-BAXTER EQUATION
    HLAVATY, L
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1987, 20 (07): : 1661 - 1667
  • [33] On twisting solutions to the Yang-Baxter equation
    Kulish, PP
    Mudrov, AI
    CZECHOSLOVAK JOURNAL OF PHYSICS, 2000, 50 (01) : 115 - 122
  • [34] Stochasticization of Solutions to the Yang-Baxter Equation
    Aggarwal, Amol
    Borodin, Alexei
    Bufetov, Alexey
    ANNALES HENRI POINCARE, 2019, 20 (08): : 2495 - 2554
  • [35] Weak Hopf algebras and singular solutions of quantum Yang-Baxter equation
    Li, F
    Duplij, S
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2002, 225 (01) : 191 - 217
  • [36] Rota-Baxter groups, skew left braces, and the Yang-Baxter equation
    Bardakov, Valeriy G.
    Gubarev, Vsevolod
    JOURNAL OF ALGEBRA, 2022, 596 : 328 - 351
  • [37] Set-theoretic solutions to the Yang-Baxter equation and generalized semi-braces
    Catino, Francesco
    Colazzo, Ilaria
    Stefanelli, Paola
    FORUM MATHEMATICUM, 2021, 33 (03) : 757 - 772
  • [38] Radical and weight of skew braces and their applications to structure groups of solutions of the Yang-Baxter equation
    Jespers, E.
    Kubat, L.
    Van Antwerpen, A.
    Vendramin, L.
    ADVANCES IN MATHEMATICS, 2021, 385
  • [39] ITERATED MATCHED PRODUCTS OF FINITE BRACES AND SIMPLICITY; NEW SOLUTIONS OF THE YANG-BAXTER EQUATION
    Bachiller, D.
    Cedo, F.
    Jespers, E.
    Okninski, J.
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2018, 370 (07) : 4881 - 4907
  • [40] Solution of the deformed Schwarzschild metric by the Yang-Baxter equation
    Meirambay, A.
    Yerzhanov, K. K.
    BULLETIN OF THE UNIVERSITY OF KARAGANDA-PHYSICS, 2019, 4 (96): : 8 - 14