Unwinding of the Substrate Transmembrane Helix in Intramembrane Proteolysis

被引:14
|
作者
Brown, Mia C. [1 ]
Abdine, Alaa [2 ]
Chavez, Jose [2 ]
Schaffner, Adam [2 ]
Torres-Arancivia, Celia [2 ]
Lada, Brian [1 ]
Jiji, Renee D. [1 ]
Osman, Roman [2 ]
Cooley, Jason W. [1 ,4 ]
Ubarretxena-Belandia, Iban [2 ,3 ]
机构
[1] Univ Missouri, Dept Chem, Columbia, MO 65211 USA
[2] Icahn Sch Med Mt Sinai, Dept Pharmacol Sci, New York, NY 10029 USA
[3] Univ Basque Country, Biofis Inst, CSIC, UPV EHU, Leioa, Spain
[4] South Bay Bioanalyt Serv, Manhattan Beach, CA 90266 USA
基金
美国国家科学基金会;
关键词
AMYLOID PRECURSOR PROTEIN; RHOMBOID PROTEASE; LIMITED PROTEOLYSIS; SECONDARY STRUCTURE; CRYSTAL-STRUCTURE; GAMMA-SECRETASE; PEPTIDE-BOND; ALPHA-HELIX; SPECIFICITY; MEMBRANE;
D O I
10.1016/j.bpj.2018.01.043
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Intramembrane-cleaving proteases (I-CLiPs) activate pools of single-pass helical membrane protein signaling precursors that are key in the physiology of prokaryotic and eukaryotic cells. Proteases typically cleave peptide bonds within extended or flexible regions of their substrates, and thus the mechanism underlying the ability of I-CLiPs to hydrolyze the presumably a-helical transmembrane domain (TMD) of these membrane proteins is unclear. Using deep-ultraviolet resonance Raman spectroscopy in combination with isotopic labeling, we show that although predominantly in canonical alpha-helical conformation, the TMD of the established I-CLiP substrate Gurken displays 3(10)-helical geometry. As measured by microscale thermophoresis, this substrate binds with high affinity to the I-CLiPs GlpG rhomboid and MCMJR1 presenilin homolog in detergent micelles. Binding results in deep-ultraviolet resonance Raman spectra, indicating conformational changes consistent with unwinding of the 3(10)-helical region of the substrate's TMD. This 3(10)-helical conformation is key for intramembrane proteolysis, as the substitution of a single proline residue in the TMD of Gurken by alanine suppresses 3(10)-helical content in favor of alpha-helical geometry and abolishes cleavage without affecting binding to the I-CLiP. Complemented by molecular dynamics simulations of the TMD of Gurken, our vibrational spectroscopy data provide biophysical evidence in support of a model in which the transmembrane region of cleavable I-CLiP substrates displays local deviations in canonical a-helical conformation characterized by chain flexibility, and binding to the enzyme results in conformational changes that facilitate local unwinding of the transmembrane helix for cleavage.
引用
收藏
页码:1579 / 1589
页数:11
相关论文
共 50 条
  • [41] Substrate Selection Criteria in Regulated Intramembrane Proteolysis (vol 15, pg 1321, 2024)
    Moser, Celine
    Guschtschin-Schmidt, Nadja
    Silber, Mara
    Flum, Julia
    Muhle-Goll, Claudia
    ACS CHEMICAL NEUROSCIENCE, 2024, 15 (15): : 2956 - 2956
  • [42] Allosteric regulation of rhomboid intramembrane proteolysis
    Arutyunova, Elena
    Panwar, Pankaj
    Skiba, Pauline M.
    Gale, Nicola
    Mak, Michelle W.
    Lemieux, M. Joanne
    EMBO JOURNAL, 2014, 33 (17): : 1869 - 1881
  • [43] Enzymatic Assays for Studying Intramembrane Proteolysis
    Bolduc, D. M.
    Selkoe, D. J.
    Wolfe, M. S.
    ENZYMOLOGY AT THE MEMBRANE INTERFACE: INTRAMEMBRANE PROTEASES, 2017, 584 : 295 - 308
  • [44] Cleavage efficiency of the intramembrane protease γ-secretase is reduced by the palmitoylation of a substrate's transmembrane domain
    Assfalg, Marlene
    Guener, Goekhan
    Mueller, Stephan A.
    Breimann, Stephan
    Langosch, Dieter
    Muhle-Goll, Claudia
    Frishman, Dmitrij
    Steiner, Harald
    Lichtenthaler, Stefan F.
    FASEB JOURNAL, 2024, 38 (02):
  • [45] SorLA signaling by regulated intramembrane proteolysis
    Boehm, Christopher
    Seibel, Nicole M.
    Henkel, Birgit
    Steiner, Harald
    Haass, Christian
    Hampe, Wolfgang
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2006, 281 (21) : 14547 - 14553
  • [46] Molecular mechanism of intramembrane proteolysis by γ-secretase
    Tomita, Taisuke
    JOURNAL OF BIOCHEMISTRY, 2014, 156 (04): : 195 - 201
  • [47] Covalent fragment inhibits intramembrane proteolysis
    Eden, Angela
    Zhao, Jing
    Xiao, Yuanyuan
    Gibson, James
    Wang, Chunyu
    FRONTIERS IN MOLECULAR BIOSCIENCES, 2022, 9
  • [48] The γ-secretase complex:: machinery for intramembrane proteolysis
    Iwatsubo, T
    CURRENT OPINION IN NEUROBIOLOGY, 2004, 14 (03) : 379 - 383
  • [49] Intramembrane Proteolysis in Regulated Protein Trafficking
    Lemberg, Marius K.
    TRAFFIC, 2011, 12 (09) : 1109 - 1118
  • [50] Development of a Reporter System Monitoring Regulated Intramembrane Proteolysis of the Transmembrane bZIP Transcription Factor ATF6α
    Kim, Jin-Ik
    Kaufman, Randal J.
    Back, Sung Hoon
    Moon, Ja-Young
    MOLECULES AND CELLS, 2019, 42 (11) : 783 - 793