Unwinding of the Substrate Transmembrane Helix in Intramembrane Proteolysis

被引:14
|
作者
Brown, Mia C. [1 ]
Abdine, Alaa [2 ]
Chavez, Jose [2 ]
Schaffner, Adam [2 ]
Torres-Arancivia, Celia [2 ]
Lada, Brian [1 ]
Jiji, Renee D. [1 ]
Osman, Roman [2 ]
Cooley, Jason W. [1 ,4 ]
Ubarretxena-Belandia, Iban [2 ,3 ]
机构
[1] Univ Missouri, Dept Chem, Columbia, MO 65211 USA
[2] Icahn Sch Med Mt Sinai, Dept Pharmacol Sci, New York, NY 10029 USA
[3] Univ Basque Country, Biofis Inst, CSIC, UPV EHU, Leioa, Spain
[4] South Bay Bioanalyt Serv, Manhattan Beach, CA 90266 USA
基金
美国国家科学基金会;
关键词
AMYLOID PRECURSOR PROTEIN; RHOMBOID PROTEASE; LIMITED PROTEOLYSIS; SECONDARY STRUCTURE; CRYSTAL-STRUCTURE; GAMMA-SECRETASE; PEPTIDE-BOND; ALPHA-HELIX; SPECIFICITY; MEMBRANE;
D O I
10.1016/j.bpj.2018.01.043
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Intramembrane-cleaving proteases (I-CLiPs) activate pools of single-pass helical membrane protein signaling precursors that are key in the physiology of prokaryotic and eukaryotic cells. Proteases typically cleave peptide bonds within extended or flexible regions of their substrates, and thus the mechanism underlying the ability of I-CLiPs to hydrolyze the presumably a-helical transmembrane domain (TMD) of these membrane proteins is unclear. Using deep-ultraviolet resonance Raman spectroscopy in combination with isotopic labeling, we show that although predominantly in canonical alpha-helical conformation, the TMD of the established I-CLiP substrate Gurken displays 3(10)-helical geometry. As measured by microscale thermophoresis, this substrate binds with high affinity to the I-CLiPs GlpG rhomboid and MCMJR1 presenilin homolog in detergent micelles. Binding results in deep-ultraviolet resonance Raman spectra, indicating conformational changes consistent with unwinding of the 3(10)-helical region of the substrate's TMD. This 3(10)-helical conformation is key for intramembrane proteolysis, as the substitution of a single proline residue in the TMD of Gurken by alanine suppresses 3(10)-helical content in favor of alpha-helical geometry and abolishes cleavage without affecting binding to the I-CLiP. Complemented by molecular dynamics simulations of the TMD of Gurken, our vibrational spectroscopy data provide biophysical evidence in support of a model in which the transmembrane region of cleavable I-CLiP substrates displays local deviations in canonical a-helical conformation characterized by chain flexibility, and binding to the enzyme results in conformational changes that facilitate local unwinding of the transmembrane helix for cleavage.
引用
收藏
页码:1579 / 1589
页数:11
相关论文
共 50 条
  • [31] γ-SECRETASE AND THE INTRAMEMBRANE PROTEOLYSIS OF NOTCH
    Jorissen, Ellen
    De Strooper, Bart
    NOTCH SIGNALING, 2010, 92 : 201 - 230
  • [32] Juxta-terminal Helix Unwinding as a Stabilizing Factor to Modulate the Dynamics of Transmembrane Helices
    Mortazavi, Armin
    Rajagopalan, Venkatesan
    Sparks, Kelsey A.
    Greathouse, Denise V.
    Koeppe, Roger E., II
    CHEMBIOCHEM, 2016, 17 (06) : 462 - 465
  • [33] Intramembrane proteolysis within lysosomes
    Schroeder, Bernd
    Saftig, Paul
    AGEING RESEARCH REVIEWS, 2016, 32 : 51 - 64
  • [34] Taking a position on intramembrane proteolysis
    Lemieux, M. Joanne
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2018, 293 (13) : 4664 - 4665
  • [35] SnapShot: Cartography of Intramembrane Proteolysis
    Urban, Sinisa
    CELL, 2016, 167 (07) : 1898 - 1898
  • [36] Intramembrane Proteolysis by GxGD Proteases
    Haass, C.
    Fluhrer, R.
    Steiner, H.
    FEBS JOURNAL, 2009, 276 : 17 - 17
  • [37] The discovery of proteases and intramembrane proteolysis
    Paschkowsky, Sandra
    Hsiao, Jacqueline Melissa
    Young, Jason C.
    Munter, Lisa Marie
    BIOCHEMISTRY AND CELL BIOLOGY, 2019, 97 (03) : 265 - 269
  • [38] Understanding intramembrane proteolysis by γ-secretase
    Steiner, Harald
    SEMINARS IN CELL & DEVELOPMENTAL BIOLOGY, 2020, 105 : 1 - 2
  • [39] UNWINDING DOUBLE HELIX
    不详
    NATURE, 1970, 227 (5265) : 1294 - +
  • [40] Evidence that regulation of intramembrane proteolysis is mediated by substrate gating during sporulation in Bacillus subtilis
    Ramirez-Guadiana, Fernando H.
    Rodrigues, Christopher D. A.
    Marquis, Kathleen A.
    Campo, Nathalie
    Barajas-Ornelas, Rocio del Carmen
    Brock, Kelly
    Marks, Debora S.
    Kruse, Andrew C.
    Rudner, David Z.
    PLOS GENETICS, 2018, 14 (11):