The moments of the Gompertz distribution and maximum likelihood estimation of its parameters

被引:43
|
作者
Lenart, Adam [1 ]
机构
[1] Max Planck Inst Demog Res, D-18057 Rostock, Germany
关键词
kurtosis; variance; expected value; parameter estimation; skewness; moment-generating function;
D O I
10.1080/03461238.2012.687697
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Gompertz distribution is widely used to describe the distribution of adult deaths. Previous works concentrated on formulating approximate relationships to characterise it. However, using the generalised integro-exponential function, exact formulas can be derived for its moment-generating function and central moments. Based on the exact central moments, higher accuracy approximations can be defined for them. In demographic or actuarial applications, maximum likelihood estimation is often used to determine the parameters of the Gompertz distribution. By solving the maximum likelihood estimates analytically, the dimension of the optimisation problem can be reduced to one both in the case of discrete and continuous data. Monte Carlo experiments show that by ML estimation, higher accuracy estimates can be acquired than by the method of moments.
引用
收藏
页码:255 / 277
页数:23
相关论文
共 50 条
  • [21] MAXIMUM-LIKELIHOOD ESTIMATION OF THE PARAMETERS OF A MULTIVARIATE NORMAL-DISTRIBUTION
    ANDERSON, TW
    OLKIN, I
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 1985, 70 (OCT) : 147 - 171
  • [22] Maximum Likelihood Estimation of ADC Parameters
    Balogh, Laszlo
    Kollar, Istvan
    Sarhegyi, Attila
    [J]. 2010 IEEE INTERNATIONAL INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE I2MTC 2010, PROCEEDINGS, 2010,
  • [23] MAXIMUM LIKELIHOOD ESTIMATION OF REGULARISATION PARAMETERS
    Vidal, Ana Fernandez
    Pereyra, Marcelo
    [J]. 2018 25TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2018, : 1742 - 1746
  • [24] Estimation of the Lognormal-Pareto Distribution Using Probability Weighted Moments and Maximum Likelihood
    Bee, Marco
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2015, 44 (08) : 2040 - 2060
  • [25] On the likelihood estimation of the parameters of Gompertz distribution based on complete and progressively Type-II censored samples
    Ghitany, M. E.
    Alqallaf, F.
    Balakrishnan, N.
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2014, 84 (08) : 1803 - 1812
  • [26] On the moments of the generalized Gompertz distribution
    Castellares, Fredy
    Lemonte, Artur J.
    [J]. APPLIED MATHEMATICAL MODELLING, 2019, 72 : 420 - 424
  • [27] MOMENTS AND MAXIMUM LIKELIHOOD
    SHENTON, LR
    [J]. AMERICAN STATISTICIAN, 1967, 21 (04): : 52 - 53
  • [28] Maximum likelihood estimation for the parameters of skew normal distribution using genetic algorithm
    Yalcinkaya, Abdullah
    Senoglu, Birdal
    Yolcu, Ufuk
    [J]. SWARM AND EVOLUTIONARY COMPUTATION, 2018, 38 : 127 - 138
  • [29] Double-looped maximum likelihood estimation for the parameters of the generalized gamma distribution
    Yilmaz, Hulya
    Sazak, Hakan S.
    [J]. MATHEMATICS AND COMPUTERS IN SIMULATION, 2014, 98 : 18 - 30
  • [30] Bias-corrected maximum likelihood estimation of the parameters of the complex Bingham distribution
    Dore, Luiz H. G.
    Amaral, Getulio J. A.
    Cruz, Jorge T. M.
    Wood, Andrew T. A.
    [J]. BRAZILIAN JOURNAL OF PROBABILITY AND STATISTICS, 2016, 30 (03) : 385 - 400