Bounds for the Z-spectral radius of nonnegative tensors

被引:19
|
作者
He, Jun [1 ]
Liu, Yan-Min [1 ]
Ke, Hua [1 ]
Tian, Jun-Kang [1 ]
Li, Xiang [1 ]
机构
[1] Zunyi Normal Coll, Sch Math, Zunyi 563002, Guizhou, Peoples R China
来源
SPRINGERPLUS | 2016年 / 5卷
关键词
Bound; Nonnegative tensor; Z-eigenvalue; PERRON-FROBENIUS THEOREM; LARGEST EIGENVALUE;
D O I
10.1186/s40064-016-3338-3
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, we have proposed some new upper bounds for the largest Z-eigenvalue of an irreducible weakly symmetric and nonnegative tensor, which improve the known upper bounds obtained in Chang et al. (Linear Algebra Appl 438: 4166-4182, 2013), Song and Qi (SIAM J Matrix Anal Appl 34: 1581-1595, 2013), He and Huang (Appl Math Lett 38: 110-114, 2014), Li et al. (J Comput Anal Appl 483: 182-199, 2015), He (J Comput Anal Appl 20: 1290-1301, 2016).
引用
下载
收藏
页数:8
相关论文
共 50 条
  • [41] Sharp bounds on the spectral radius of nonnegative matrices and digraphs
    Butler, Brian K.
    Siegel, Paul H.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 439 (05) : 1468 - 1478
  • [42] Sharp bounds on the spectral radius of nonnegative matrices and comparison to the frobenius’ bounds
    Adam M.
    Assimakis N.
    Babouklis F.
    1600, North Atlantic University Union, 942 Windemere Dr. NW.,, Salem, Oregon 97304, United States (14): : 423 - 434
  • [43] Upper bounds for H- and Z-spectral radii of uniform hypergraphs
    Lin, Hongying
    Zhou, Bo
    Mo, Biao
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2016, 510 : 205 - 221
  • [44] Characterizations of the spectral radius of nonnegative weakly irreducible tensors via a digraph
    Sun, Lizhu
    Zheng, Baodong
    Wei, Yimin
    Bu, Changjiang
    LINEAR & MULTILINEAR ALGEBRA, 2016, 64 (04): : 737 - 744
  • [46] SIMPLIFICATIONS OF THE OSTROWSKI UPPER BOUNDS FOR THE SPECTRAL RADIUS OF NONNEGATIVE MATRICES
    Li, Chaoqian
    Hu, Baohua
    Li, Yaotang
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2014, 27 : 237 - 249
  • [47] Bounds for the spectral radius of nonnegative matrices and generalized Fibonacci matrices
    Adam, Maria
    Aretaki, Aikaterini
    SPECIAL MATRICES, 2022, 10 (01): : 308 - 326
  • [48] Sequences of lower and upper bounds for the spectral radius of a nonnegative matrix
    Adam, Maria
    Oikonomou, Iro
    Aretaki, Aikaterini
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2023, 667 : 165 - 191
  • [50] Power Function Method for Finding the Spectral Radius of Weakly Irreducible Nonnegative Tensors
    Liu, Panpan
    Liu, Guimin
    Lv, Hongbin
    SYMMETRY-BASEL, 2022, 14 (10):