Metabolic engineering of muconic acid production in Saccharomyces cerevisiae

被引:202
|
作者
Curran, Kathleen A. [1 ]
Leavitt, Johnm. [2 ]
Karim, AshtyS. [1 ]
Alper, Hal S. [1 ,2 ]
机构
[1] Univ Texas Austin, Dept Chem Engn, Austin, TX 78712 USA
[2] Univ Texas Austin, Inst Cellular & Mol Biol, Austin, TX 78712 USA
关键词
Muconic acid; Muconate; Terephthalic acid; Adipic acid; Saccharomyces cerevisiae; CONSTRAINT-BASED MODELS; L-TYROSINE PRODUCTION; ESCHERICHIA-COLI; QUANTITATIVE PREDICTION; TRANSCRIPTION MACHINERY; CELLULAR-METABOLISM; SYSTEMS BIOLOGY; GENE KNOCKOUT; BAKERS-YEAST; BIOSYNTHESIS;
D O I
10.1016/j.ymben.2012.10.003
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
The dicarboxylic acid muconic acid has garnered significant interest due to its potential use as a platform chemical for the production of several valuable consumer bio-plastics including nylon-6,6 and polyurethane (via an adipic acid intermediate) and polyethylene terephthalate (PET) (via a terephthalic acid intermediate). Many process advantages (including lower pH levels) support the production of this molecule in yeast. Here, we present the first heterologous production of muconic acid in the yeast Saccharomyces cerevisiae. A three-step synthetic, composite pathway comprised of the enzymes dehydroshikimate dehydratase from Podospora anserina, protocatechuic acid decarboxylase from Enterobacter cloacae, and catechol 1,2-dioxygenase from Candida albicans was imported into yeast. Further genetic modifications guided by metabolic modeling and feedback inhibition mitigation were introduced to increase precursor availability. Specifically, the knockout of AR03 and overexpression of a feedback-resistant mutant of aro4 reduced feedback inhibition in the shikimate pathway, and the zwf1 deletion and over-expression of TKL1 increased flux of necessary precursors into the pathway. Further balancing of the heterologous enzyme levels led to a final titer of nearly 141 mg/L muconic acid in a shake-flask culture, a value nearly 24-fold higher than the initial strain. Moreover, this strain has the highest titer and second highest yield of any reported shikimate and aromatic amino acid-based molecule in yeast in a simple batch condition. This work collectively demonstrates that yeast has the potential to be a platform for the bioproduction of muconic acid and suggests an area that is ripe for future metabolic engineering efforts. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:55 / 66
页数:12
相关论文
共 50 条
  • [41] Metabolic engineering of Saccharomyces cerevisiae for production of fatty acid-derived biofuels and chemicals
    Runguphan, Weerawat
    Keasling, Jay D.
    METABOLIC ENGINEERING, 2014, 21 : 103 - 113
  • [42] Metabolic engineering of Saccharomyces cerevisiae for efficient production of pure L-(+)- lactic acid
    Ishida, Nobuhiro
    Saitoh, Satoshi
    Ohnishi, Toru
    Tokuhiro, Kenro
    Nagamori, Eiji
    Kitamoto, Katsuhiko
    Takahashi, Haruo
    APPLIED BIOCHEMISTRY AND BIOTECHNOLOGY, 2006, 131 (1-3) : 795 - 807
  • [43] Biosensor-Enabled Directed Evolution to Improve Muconic Acid Production in Saccharomyces cerevisiae
    Leavitt, John M.
    Wagner, James M.
    Tu, Cuong C.
    Tong, Alice
    Liu, Yanyi
    Alper, Hal S.
    BIOTECHNOLOGY JOURNAL, 2017, 12 (10)
  • [44] Production of L-Lactic Acid in Saccharomyces cerevisiae Through Metabolic Engineering and Rational Cofactor Engineering
    Fuxiao Li
    Xin Wei
    Qinju Sun
    Yan Guo
    Jidong Liu
    Sugar Tech, 2022, 24 : 1272 - 1283
  • [45] Production of L-Lactic Acid in Saccharomyces cerevisiae Through Metabolic Engineering and Rational Cofactor Engineering
    Li, Fuxiao
    Wei, Xin
    Sun, Qinju
    Guo, Yan
    Liu, Jidong
    SUGAR TECH, 2022, 24 (04) : 1272 - 1283
  • [46] High production of valencene in Saccharomyces cerevisiae through metabolic engineering
    Hefeng Chen
    Chaoyi Zhu
    Muzi Zhu
    Jinghui Xiong
    Hao Ma
    Min Zhuo
    Shuang Li
    Microbial Cell Factories, 18
  • [47] Metabolic engineering of Saccharomyces cerevisiae for the production of n-butanol
    Eric J Steen
    Rossana Chan
    Nilu Prasad
    Samuel Myers
    Christopher J Petzold
    Alyssa Redding
    Mario Ouellet
    Jay D Keasling
    Microbial Cell Factories, 7
  • [48] Production of mannosylglycerate in Saccharomyces cerevisiae by metabolic engineering and bioprocess optimization
    Cristiana Faria
    Nuno Borges
    Isabel Rocha
    Helena Santos
    Microbial Cell Factories, 17
  • [49] Metabolic pathway engineering of yeast Saccharomyces cerevisiae for isobutanol production
    Ishii, Jun
    Matsuda, Fumio
    Kondo, Akihiko
    YEAST, 2013, 30 : 210 - 210
  • [50] Production of mannosylglycerate in Saccharomyces cerevisiae by metabolic engineering and bioprocess optimization
    Faria, Cristiana
    Borges, Nuno
    Rocha, Isabel
    Santos, Helena
    MICROBIAL CELL FACTORIES, 2018, 17