Metabolic engineering of muconic acid production in Saccharomyces cerevisiae

被引:202
|
作者
Curran, Kathleen A. [1 ]
Leavitt, Johnm. [2 ]
Karim, AshtyS. [1 ]
Alper, Hal S. [1 ,2 ]
机构
[1] Univ Texas Austin, Dept Chem Engn, Austin, TX 78712 USA
[2] Univ Texas Austin, Inst Cellular & Mol Biol, Austin, TX 78712 USA
关键词
Muconic acid; Muconate; Terephthalic acid; Adipic acid; Saccharomyces cerevisiae; CONSTRAINT-BASED MODELS; L-TYROSINE PRODUCTION; ESCHERICHIA-COLI; QUANTITATIVE PREDICTION; TRANSCRIPTION MACHINERY; CELLULAR-METABOLISM; SYSTEMS BIOLOGY; GENE KNOCKOUT; BAKERS-YEAST; BIOSYNTHESIS;
D O I
10.1016/j.ymben.2012.10.003
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
The dicarboxylic acid muconic acid has garnered significant interest due to its potential use as a platform chemical for the production of several valuable consumer bio-plastics including nylon-6,6 and polyurethane (via an adipic acid intermediate) and polyethylene terephthalate (PET) (via a terephthalic acid intermediate). Many process advantages (including lower pH levels) support the production of this molecule in yeast. Here, we present the first heterologous production of muconic acid in the yeast Saccharomyces cerevisiae. A three-step synthetic, composite pathway comprised of the enzymes dehydroshikimate dehydratase from Podospora anserina, protocatechuic acid decarboxylase from Enterobacter cloacae, and catechol 1,2-dioxygenase from Candida albicans was imported into yeast. Further genetic modifications guided by metabolic modeling and feedback inhibition mitigation were introduced to increase precursor availability. Specifically, the knockout of AR03 and overexpression of a feedback-resistant mutant of aro4 reduced feedback inhibition in the shikimate pathway, and the zwf1 deletion and over-expression of TKL1 increased flux of necessary precursors into the pathway. Further balancing of the heterologous enzyme levels led to a final titer of nearly 141 mg/L muconic acid in a shake-flask culture, a value nearly 24-fold higher than the initial strain. Moreover, this strain has the highest titer and second highest yield of any reported shikimate and aromatic amino acid-based molecule in yeast in a simple batch condition. This work collectively demonstrates that yeast has the potential to be a platform for the bioproduction of muconic acid and suggests an area that is ripe for future metabolic engineering efforts. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:55 / 66
页数:12
相关论文
共 50 条
  • [21] Metabolic engineering of Saccharomyces cerevisiae for linalool production
    Pegah Amiri
    Azar Shahpiri
    Mohammad Ali Asadollahi
    Fariborz Momenbeik
    Siavash Partow
    Biotechnology Letters, 2016, 38 : 503 - 508
  • [22] Metabolic engineering of Saccharomyces cerevisiae for linalool production
    Amiri, Pegah
    Shahpiri, Azar
    Asadollahi, Mohammad Ali
    Momenbeik, Fariborz
    Partow, Siavash
    BIOTECHNOLOGY LETTERS, 2016, 38 (03) : 503 - 508
  • [23] Metabolic engineering of Saccharomyces cerevisiae to improve succinic acid production based on metabolic profiling
    Ito, Yuma
    Hirasawa, Takashi
    Shimizu, Hiroshi
    BIOSCIENCE BIOTECHNOLOGY AND BIOCHEMISTRY, 2014, 78 (01) : 151 - 159
  • [24] Metabolic engineering of Saccharomyces cerevisiae for efficient production of pure l−(+)−lactic acid
    Nobuhiro Ishida
    Satoshi Saitoh
    Toru Ohnishi
    Kenro Tokuhiro
    Eiji Nagamori
    Katsuhiko Kitamoto
    Haruo Takahashi
    Applied Biochemistry and Biotechnology, 2006, 131 : 795 - 807
  • [25] Metabolic engineering of Saccharomyces cerevisiae for efficient production of glucaric acid at high titer
    Chen, Na
    Wang, Jingya
    Zhao, Yunying
    Deng, Yu
    MICROBIAL CELL FACTORIES, 2018, 17
  • [26] Metabolic engineering of Saccharomyces cerevisiae microbial cell factories for succinic acid production
    Otero, Jose Manuel
    Olsson, Lisbeth
    Nielsen, Jens
    JOURNAL OF BIOTECHNOLOGY, 2007, 131 (02) : S205 - S205
  • [27] Metabolic engineering of Saccharomyces cerevisiae for efficient production of glucaric acid at high titer
    Na Chen
    Jingya Wang
    Yunying Zhao
    Yu Deng
    Microbial Cell Factories, 17
  • [28] Metabolic engineering of Saccharomyces cerevisiae for production of fatty acid-derived hydrocarbons
    Zhang, Yiming
    Nielsen, Jens
    Liu, Zihe
    BIOTECHNOLOGY AND BIOENGINEERING, 2018, 115 (09) : 2139 - 2147
  • [29] Metabolic engineering of Saccharomyces cerevisiae for production of butanol isomers
    Generoso, Wesley Cardoso
    Schadeweg, Virginia
    Oreb, Mislav
    Boles, Eckhard
    CURRENT OPINION IN BIOTECHNOLOGY, 2015, 33 : 1 - 7
  • [30] Ethylene production by metabolic engineering of the yeast Saccharomyces cerevisiae
    Pirkov, I.
    Albers, E.
    Norbeck, J.
    Larsson, C.
    METABOLIC ENGINEERING, 2008, 10 (05) : 276 - 280