Metabolic engineering of muconic acid production in Saccharomyces cerevisiae

被引:202
|
作者
Curran, Kathleen A. [1 ]
Leavitt, Johnm. [2 ]
Karim, AshtyS. [1 ]
Alper, Hal S. [1 ,2 ]
机构
[1] Univ Texas Austin, Dept Chem Engn, Austin, TX 78712 USA
[2] Univ Texas Austin, Inst Cellular & Mol Biol, Austin, TX 78712 USA
关键词
Muconic acid; Muconate; Terephthalic acid; Adipic acid; Saccharomyces cerevisiae; CONSTRAINT-BASED MODELS; L-TYROSINE PRODUCTION; ESCHERICHIA-COLI; QUANTITATIVE PREDICTION; TRANSCRIPTION MACHINERY; CELLULAR-METABOLISM; SYSTEMS BIOLOGY; GENE KNOCKOUT; BAKERS-YEAST; BIOSYNTHESIS;
D O I
10.1016/j.ymben.2012.10.003
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
The dicarboxylic acid muconic acid has garnered significant interest due to its potential use as a platform chemical for the production of several valuable consumer bio-plastics including nylon-6,6 and polyurethane (via an adipic acid intermediate) and polyethylene terephthalate (PET) (via a terephthalic acid intermediate). Many process advantages (including lower pH levels) support the production of this molecule in yeast. Here, we present the first heterologous production of muconic acid in the yeast Saccharomyces cerevisiae. A three-step synthetic, composite pathway comprised of the enzymes dehydroshikimate dehydratase from Podospora anserina, protocatechuic acid decarboxylase from Enterobacter cloacae, and catechol 1,2-dioxygenase from Candida albicans was imported into yeast. Further genetic modifications guided by metabolic modeling and feedback inhibition mitigation were introduced to increase precursor availability. Specifically, the knockout of AR03 and overexpression of a feedback-resistant mutant of aro4 reduced feedback inhibition in the shikimate pathway, and the zwf1 deletion and over-expression of TKL1 increased flux of necessary precursors into the pathway. Further balancing of the heterologous enzyme levels led to a final titer of nearly 141 mg/L muconic acid in a shake-flask culture, a value nearly 24-fold higher than the initial strain. Moreover, this strain has the highest titer and second highest yield of any reported shikimate and aromatic amino acid-based molecule in yeast in a simple batch condition. This work collectively demonstrates that yeast has the potential to be a platform for the bioproduction of muconic acid and suggests an area that is ripe for future metabolic engineering efforts. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:55 / 66
页数:12
相关论文
共 50 条
  • [1] Metabolic Engineering for Glycyrrhetinic Acid Production in Saccharomyces cerevisiae
    Guan, Ruobing
    Wang, Mengge
    Guan, Zhonghua
    Jin, Cheng-Yun
    Lin, Wei
    Ji, Xiao-Jun
    Wei, Yongjun
    Frontiers in Bioengineering and Biotechnology, 2020, 8
  • [2] Metabolic Engineering of Saccharomyces cerevisiae for Rosmarinic Acid Production
    Babaei, Mahsa
    Zamfir, Gheorghe M. Borja
    Chen, Xiao
    Christensen, Hanne Bjerre
    Kristensen, Mette
    Nielsen, Jens
    Borodina, Irina
    ACS SYNTHETIC BIOLOGY, 2020, 9 (08): : 1978 - 1988
  • [3] Metabolic Engineering for Glycyrrhetinic Acid Production in Saccharomyces cerevisiae
    Guan, Ruobing
    Wang, Mengge
    Guan, Zhonghua
    Jin, Cheng-Yun
    Lin, Wei
    Ji, Xiao-Jun
    Wei, Yongjun
    FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2020, 8
  • [4] Metabolic engineering of Saccharomyces cerevisiae for itaconic acid production
    John Blazeck
    Jarrett Miller
    Anny Pan
    Jon Gengler
    Clinton Holden
    Mariam Jamoussi
    Hal S. Alper
    Applied Microbiology and Biotechnology, 2014, 98 : 8155 - 8164
  • [5] Metabolic engineering of Saccharomyces cerevisiae for itaconic acid production
    Blazeck, John
    Miller, Jarrett
    Pan, Anny
    Gengler, Jon
    Holden, Clinton
    Jamoussi, Mariam
    Alper, Hal S.
    APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2014, 98 (19) : 8155 - 8164
  • [6] Metabolic engineering of succinic acid production in Saccharomyces cerevisiae
    Cimini, D
    Patil, KR
    Lettier, G
    Schiraldi, C
    Nielsen, J
    JOURNAL OF BIOTECHNOLOGY, 2005, 118 : S118 - S118
  • [7] Metabolic Engineering of Saccharomyces cerevisiae for Heterologous Carnosic Acid Production
    Wei, Panpan
    Zhang, Chuanbo
    Bian, Xueke
    Lu, Wenyu
    FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2022, 10
  • [8] Metabolic Engineering of Saccharomyces cerevisiae for Enhanced Dihydroartemisinic Acid Production
    Zeng, Bo-Xuan
    Yao, Ming-Dong
    Wang, Ying
    Xiao, Wen-Hai
    Yuan, Ying-Jin
    FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2020, 8
  • [9] Metabolic engineering of Saccharomyces cerevisiae for enhanced production of caffeic acid
    Zhou, Pingping
    Yue, Chunlei
    Shen, Bin
    Du, Yi
    Xu, Nannan
    Ye, Lidan
    APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2021, 105 (14-15) : 5809 - 5819
  • [10] Metabolic engineering of Saccharomyces cerevisiae for the production of triacetic acid lactone
    Cardenas, Javier
    Da Silva, Nancy A.
    METABOLIC ENGINEERING, 2014, 25 : 194 - 203