Time-dependent variational principle for dissipative dynamics

被引:3
|
作者
Kraus, Christina V. [1 ,2 ]
Osborne, Tobias J. [3 ]
机构
[1] Austrian Acad Sci, Inst Quantum Opt & Quantum Informat, A-6020 Innsbruck, Austria
[2] Univ Innsbruck, Inst Theoret Phys, A-6020 Innsbruck, Austria
[3] Leibniz Univ Hannover, Inst Theoret Phys, D-30167 Hannover, Germany
来源
PHYSICAL REVIEW A | 2012年 / 86卷 / 06期
关键词
QUANTUM; DRIVEN;
D O I
10.1103/PhysRevA.86.062115
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We extend the time-dependent variational principle to the setting of dissipative dynamics. This provides a locally optimal (in time) approximation to the dynamics of any Lindblad equation within a given variational manifold of mixed states. In contrast to the pure-state setting, there is no canonical information geometry for mixed states, and this leads to a family of possible trajectories-one for each information metric. We focus on the case of the operationally motivated family of monotone Riemannian metrics and show further that, in the particular case where the variationalmanifold is given by the set of fermionic Gaussian states, all of these possible trajectories coincide. We illustrate our results in the case of the Hubbard model subject to spin decoherence.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] Chaos in time-dependent variational approximations to quantum dynamics
    Cooper, Fred
    Dawson, John
    Habib, Salman
    Ryne, Robert D.
    Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 1998, 57 (2 -A): : 1489 - 1498
  • [32] Chaos in time-dependent variational approximations to quantum dynamics
    Cooper, F
    Dawson, J
    Habib, S
    Ryne, RD
    PHYSICAL REVIEW E, 1998, 57 (02): : 1489 - 1498
  • [33] Time-dependent and outflow boundary conditions for Dissipative Particle Dynamics
    Lei, Huan
    Fedosov, Dmitry A.
    Karniadakis, George Em
    JOURNAL OF COMPUTATIONAL PHYSICS, 2011, 230 (10) : 3765 - 3779
  • [34] QUANTUM DYNAMICS OF A DISSIPATIVE KERR MEDIUM WITH TIME-DEPENDENT PARAMETERS
    MANCINI, S
    TOMBESI, P
    PHYSICAL REVIEW A, 1995, 52 (03): : 2475 - 2478
  • [36] TIME-DEPENDENT LINEAR-SYSTEMS DERIVABLE FROM A VARIATIONAL PRINCIPLE
    SARLET, W
    ENGELS, E
    BAHAR, LY
    INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 1982, 20 (01) : 55 - 66
  • [37] Gaussian time-dependent variational principle for the Bose-Hubbard model
    Guaita, Tommaso
    Hack, Lucas
    Shi, Tao
    Hubig, Claudius
    Demler, Eugene
    Cirac, J. Ignacio
    PHYSICAL REVIEW B, 2019, 100 (09)
  • [38] Stochastic Adaptive Single-Site Time-Dependent Variational Principle
    Xu, Yihe
    Xie, Zhaoxuan
    Xie, Xiaoyu
    Schollwoeck, Ulrich
    Ma, Haibo
    JACS AU, 2022, 2 (02): : 335 - 340
  • [40] Parallel time-dependent variational principle algorithm for matrix product states
    Secular, Paul
    Gourianov, Nikita
    Lubasch, Michael
    Dolgov, Sergey
    Clark, Stephen R.
    Jaksch, Dieter
    PHYSICAL REVIEW B, 2020, 101 (23)