Chaos in time-dependent variational approximations to quantum dynamics

被引:39
|
作者
Cooper, F
Dawson, J
Habib, S
Ryne, RD
机构
[1] Univ Calif Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA
[2] Univ New Hampshire, Dept Phys, Durham, NH 03824 USA
[3] Univ Calif Los Alamos Natl Lab, LANSCE 1, LANSCE Div, Los Alamos, NM 87545 USA
来源
PHYSICAL REVIEW E | 1998年 / 57卷 / 02期
关键词
D O I
10.1103/PhysRevE.57.1489
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Dynamical chaos has recently been shown to exist in the Gaussian approximation in quantum mechanics and in the self-consistent mean held approach to studying the dynamics of quantum fields. In this study, we first note that any variational approximation to the dynamics of a quantum system based on the Dirac action principle leads to a classical Hamiltonian dynamics for the variational parameters. Since this Hamiltonian is generically nonlinear and nonintegrable, the dynamics thus generated can be chaotic, in distinction to the exact quantum evolution. We then restrict our attention to a system of two biquadratically coupled quantum oscillators and study two variational schemes, the leading order large-N (four canonical variables) and Hartree (six canonical variables) approximations. The chaos seen in the approximate dynamics is an artifact of the approximations: this is demonstrated by the fact that its onset occurs on the same characteristic time scale as the breakdown of the approximations when compared to numerical solutions of the time-dependent Schrodinger equation. [S1063-651X(98)04301-3].
引用
收藏
页码:1489 / 1498
页数:10
相关论文
共 50 条
  • [1] Chaos in time-dependent variational approximations to quantum dynamics
    Cooper, Fred
    Dawson, John
    Habib, Salman
    Ryne, Robert D.
    Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 1998, 57 (2 -A): : 1489 - 1498
  • [2] QUANTUM DYNAMICS IN A TIME-DEPENDENT VARIATIONAL APPROXIMATION
    COOPER, F
    PI, SY
    STANCIOFF, PN
    PHYSICAL REVIEW D, 1986, 34 (12): : 3831 - 3841
  • [3] TIME-DEPENDENT MANIFESTATIONS OF QUANTUM CHAOS
    WILKIE, J
    BRUMER, P
    PHYSICAL REVIEW LETTERS, 1991, 67 (10) : 1185 - 1188
  • [4] EFFECT OF NOISE ON TIME-DEPENDENT QUANTUM CHAOS
    OTT, E
    ANTONSEN, TM
    HANSON, JD
    PHYSICAL REVIEW LETTERS, 1984, 53 (23) : 2187 - 2190
  • [5] VARIATIONAL APPROXIMATIONS TO TIME-DEPENDENT HARTREE-FOCK THEORY
    LANGHOFF, PW
    CHAN, SW
    MOLECULAR PHYSICS, 1973, 25 (02) : 345 - 359
  • [6] Time-Dependent Variational Principle for Quantum Lattices
    Haegeman, Jutho
    Cirac, J. Ignacio
    Osborne, Tobias J.
    Pizorn, Iztok
    Verschelde, Henri
    Verstraete, Frank
    PHYSICAL REVIEW LETTERS, 2011, 107 (07)
  • [7] Time-dependent variational principle for dissipative dynamics
    Kraus, Christina V.
    Osborne, Tobias J.
    PHYSICAL REVIEW A, 2012, 86 (06):
  • [8] TIME-DEPENDENT VARIATIONAL APPROACH TO SEMICLASSICAL DYNAMICS
    HELLER, EJ
    JOURNAL OF CHEMICAL PHYSICS, 1976, 64 (01): : 63 - 73
  • [9] Time-dependent studies of reaction dynamics: a test of mixed quantum/classical time-dependent self-consistent field approximations
    Wang, LC
    McCoy, AB
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 1999, 1 (06) : 1227 - 1235
  • [10] Controlling quantum chaos: Time-dependent kicked rotor
    Tomsovic S.
    Urbina J.D.
    Richter K.
    Physical Review E, 2023, 108 (04)