Multiple Classifier Systems for More Accurate Java']JavaScript Malware Detection

被引:0
|
作者
Yi, Zibo [1 ]
Ma, Jun [1 ]
Luo, Lei [1 ]
Yu, Jie [1 ]
Wu, Qingbo [1 ]
机构
[1] Natl Univ Def Technol, Coll Comp, Changsha, Hunan, Peoples R China
关键词
machine learning; !text type='Java']Java[!/text]Script malware detection; multiple classifier system;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The researches of JavaScript malware detection focus on machine learning techniques in recent years. These works extract features from JavaScript's abstract syntax tree for the training of classifiers and achieve satisfactory detection results. However, in the training set there exist some scripts that are not so representative and may cause occasional incorrect classification. We propose multiple classifier system (MCS) to reduce this kind of misclassification. As shown in the experiments, the accuracy increases because of the MCS while training time is slightly greater than the original classifier.
引用
收藏
页码:139 / 143
页数:5
相关论文
共 50 条
  • [1] Advanced Transcriptase for Java']JavaScript Malware
    Di Troia, Fabio
    Visaggio, Corrado Aaron
    Austin, Thomas H.
    Stamp, Mark
    [J]. 2016 11TH INTERNATIONAL CONFERENCE ON MALICIOUS AND UNWANTED SOFTWARE (MALWARE), 2016, : 121 - 128
  • [2] Hunting for metamorphic Java']JavaScript malware
    Musale, Mangesh
    Austin, Thomas H.
    Stamp, Mark
    [J]. JOURNAL IN COMPUTER VIROLOGY AND HACKING TECHNIQUES, 2015, 11 (02): : 89 - 102
  • [3] Novel Java']JavaScript malware detection based on fuzzy Petri nets
    Lin, Yi-Nan
    Wang, Sheng-Kuan
    Yang, Cheng-Ying
    Shen, Victor R. L.
    Juang, Tony Tong-Ying
    Wei, Chin -Shan
    [J]. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2020, 39 (01) : 249 - 261
  • [4] A Systematic Literature Review and Quality Analysis of Java']Javascript Malware Detection
    Sohan, Md. Fahimuzzman
    Basalamah, Anas
    [J]. IEEE ACCESS, 2020, 8 : 190539 - 190552
  • [5] Improving Java']JavaScript Malware Classifier's Security against Evasion by Particle Swarm Optimization
    Yi, Zibo
    Ma, Jun
    Luo, Lei
    Yu, Jie
    Wu, Qingbo
    [J]. 2016 IEEE TRUSTCOM/BIGDATASE/ISPA, 2016, : 1734 - 1740
  • [6] Detection of Java']JavaScript of Malware with un-readability using Mahalanobis-distance
    Takamori, Kentaro
    Iwamoto, Mai
    Oshima, Shunsuke
    Nakashima, Takuo
    [J]. 2014 NINTH INTERNATIONAL CONFERENCE ON BROADBAND AND WIRELESS COMPUTING, COMMUNICATION AND APPLICATIONS (BWCCA), 2014, : 497 - 502
  • [7] Is eval () Evil : A study of Java']JavaScript in PDF malware
    Lemay, Antoine
    Leblanc, Sylvain P.
    [J]. PROCEEDINGS OF THE 2018 13TH INTERNATIONAL CONFERENCE ON MALICIOUS AND UNWANTED SOFTWARE (MALWARE 2018), 2018, : 13 - 22
  • [8] Next-generation antivirus for Java']JavaScript malware detection based on dynamic features
    de Lima, Sidney M. L.
    Souza, Danilo M.
    Pinheiro, Ricardo P.
    Silva, Sthefano H. M. T.
    Lopes, Petronio G.
    de Lima, Rafael D. T.
    de Oliveira, Jemerson R.
    Monteiro, Thyago de A.
    Fernandes, Sergio M. M.
    Albuquerque, Edison de Q.
    da Silva, Washington W. A.
    dos Santos, Wellington P.
    [J]. KNOWLEDGE AND INFORMATION SYSTEMS, 2024, 66 (02) : 1337 - 1370
  • [9] JAVA']JAVASCRIPT MALWARE DETECTION USING A HIGH-LEVEL FUZZY PETRI NET
    Shen, Victor R. L.
    Wei, Chin-Shan
    Juang, Tony Tong-Ying
    [J]. PROCEEDINGS OF 2018 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS (ICMLC), VOL 2, 2018, : 511 - 514
  • [10] Static Semantics Reconstruction for Enhancing Java']JavaScript-WebAssembly Multilingual Malware Detection
    Xia, Yifan
    He, Ping
    Zhang, Xuhong
    Liu, Peiyu
    Ji, Shouling
    Wang, Wenhai
    [J]. COMPUTER SECURITY - ESORICS 2023, PT II, 2024, 14345 : 255 - 276