Mitotic spindles revisited - new insights from 3D electron microscopy

被引:14
|
作者
Mueller-Reichert, Thomas [1 ]
Kiewisz, Robert [1 ]
Redemann, Stefanie [1 ,2 ,3 ]
机构
[1] Tech Univ Dresden, Expt Ctr, Med Fac Carl Gustav Carus, Fiedlerstr 42, D-01307 Dresden, Germany
[2] Univ Virginia, Sch Med, Ctr Membrane & Cell Physiol, Charlottesville, VA 22908 USA
[3] Univ Virginia, Sch Med, Dept Mol Physiol & Biol Phys, Charlottesville, VA 22908 USA
基金
欧盟地平线“2020”;
关键词
3D reconstruction; Electron tomography; Microtubule segmentation; Microtubule; Mitosis; Spindle; MICROTUBULE DYNAMICS; FLUORESCENCE MICROSCOPY; MOLECULAR SOCIOLOGY; CORRELATIVE LIGHT; IN-SITU; ELEGANS; TOMOGRAPHY; ORGANIZATION; PROTEIN; CELLS;
D O I
10.1242/jcs.211383
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
The mitotic spindle is a complex three-dimensional (3D) apparatus that functions to ensure the faithful segregation of chromosomes during cell division. Our current understanding of spindle architecture is mainly based on a plethora of information derived from light microscopy with rather few insights about spindle ultrastructure obtained from electron microscopy. In this Review, we will provide insights into the history of imaging of mitotic spindles and highlight recent technological advances in electron tomography and data processing, which have delivered detailed 3D reconstructions of mitotic spindles in the early embryo of the nematode Caenorhabditis elegans. Tomographic reconstructions provide novel views on spindles and will enable us to revisit and address long-standing questions in the field of mitosis.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Functional insights into pathogen biology from 3D electron microscopy
    Cyrklaff, Marek
    Frischknecht, Friedrich
    Kudryashev, Mikhail
    [J]. FEMS MICROBIOLOGY REVIEWS, 2017, 41 (06) : 828 - 853
  • [2] Insights into Actin-Myosin Interactions within Muscle from 3D Electron Microscopy
    Taylor, Kenneth A.
    Rahmani, Hamidreza
    Edwards, Robert J.
    Reedy, Michael K.
    [J]. INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2019, 20 (07):
  • [3] A NEW PRINCIPLE OF ORIENTATION DETERMINATION FOR 3D ELECTRON DIFFRACTION MICROSCOPY
    Liu, H. H.
    Poulsen, H. F.
    Schmidt, S.
    Sorensen, H. O.
    Godfrey, A.
    Huang, X.
    [J]. CHALLENGES IN MATERIALS SCIENCE AND POSSIBILITIES IN 3D AND 4D CHARACTERIZATION TECHNIQUES, 2010, : 311 - 316
  • [4] 3D electron microscopy of endothelial glycocalyx
    Arkill, K.
    Knupp, C.
    Starborg, T.
    Michel, C.
    Qvortrup, K.
    Rostgaard, J.
    Neal, C. R.
    Squire, J.
    [J]. JOURNAL OF VASCULAR RESEARCH, 2011, 48 : 244 - 244
  • [5] Exploring nanomaterials with 3D electron microscopy
    Ersen, O.
    Florea, I.
    Hirlimann, C.
    Pham-Huu, C.
    [J]. MATERIALS TODAY, 2015, 18 (07) : 395 - 408
  • [6] Correlating 3D light to 3D electron microscopy for systems biology
    Collinson, Lucy M.
    Carroll, Elizabeth C.
    Hoogenboom, Jacob P.
    [J]. CURRENT OPINION IN BIOMEDICAL ENGINEERING, 2017, 3 : 49 - 55
  • [7] DETECTION OF 3D FILAMENTOUS NETWORKS FROM TOMOGRAPHIC ELECTRON MICROSCOPY
    Loss, Leandro A.
    Chang, Hang
    Sarkar, Purbasha
    Auer, Manfred
    Parvin, Bahram
    [J]. 2012 9TH IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2012, : 1385 - 1388
  • [8] 3D electron microscopy of the interaction of kinesin with tubulin
    Hirose, K
    Löwe, J
    Alonso, M
    Cross, RA
    Amos, LA
    [J]. CELL STRUCTURE AND FUNCTION, 1999, 24 (05) : 277 - 284
  • [9] Catching HIV 'in the act' with 3D electron microscopy
    Earl, Lesley A.
    Lifson, Jeffrey D.
    Subramaniam, Sriram
    [J]. TRENDS IN MICROBIOLOGY, 2013, 21 (08) : 397 - 404
  • [10] Noise Analysis and Removal in 3D Electron Microscopy
    Roels, Joris
    Aelterman, Jan
    De Vylder, Jonas
    Luong, Hiep
    Saeys, Yvan
    Lippens, Saskia
    Philips, Wilfried
    [J]. ADVANCES IN VISUAL COMPUTING (ISVC 2014), PT 1, 2014, 8887 : 31 - 40