A Priori Error Analysis for Navier Stokes Equations with Slip Boundary Conditions of Friction Type

被引:2
|
作者
Djoko, J. K. [1 ]
机构
[1] Univ Pretoria, Dept Math & Appl Math, Private Bag X20 Hatfield, ZA-0028 Pretoria, South Africa
基金
新加坡国家研究基金会;
关键词
Navier Stokes equations; Nonlinear slip boundary conditions; Variational inequality; Time discretization; Convergence; Minimal regularity; Rate of convergence; DISCRETIZATIONS;
D O I
10.1007/s00021-019-0421-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The time dependent Navier Stokes equations under nonlinear slip boundary conditions are discretized by backward Euler scheme in time and finite elements in space. We derive error estimates for the semi-discrete problems. The focus on the semi discrete problem in time is to obtain convergence rate without extra regularity on the weak solution by following Nochetto et al. (Commun Pure Appl Math 53(5):525-589, 2000). The semi discrete problem in space is analyzed with the help of the Stokes operator introduced. Finally we use the triangle inequality to derive the global a priori error estimates.
引用
收藏
页数:32
相关论文
共 50 条
  • [1] A Priori Error Analysis for Navier Stokes Equations with Slip Boundary Conditions of Friction Type
    J. K. Djoko
    [J]. Journal of Mathematical Fluid Mechanics, 2019, 21
  • [2] The compressible Navier–Stokes equations with slip boundary conditions of friction type
    Šárka Nečasová
    Justyna Ogorzaly
    Jan Scherz
    [J]. Zeitschrift für angewandte Mathematik und Physik, 2023, 74
  • [3] The compressible Navier-Stokes equations with slip boundary conditions of friction type
    Necasova, Sarka
    Ogorzaly, Justyna
    Scherz, Jan
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2023, 74 (05):
  • [4] On the Navier-Stokes equation with slip boundary conditions of friction type
    Saidi, F.
    [J]. MATHEMATICAL MODELLING AND ANALYSIS, 2007, 12 (03) : 389 - 398
  • [5] The Micropolar Navier Stokes equations: A priori error analysis
    Nochetto, Ricardo H.
    Salgado, Abner J.
    Tomas, Ignacio
    [J]. MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2014, 24 (07): : 1237 - 1264
  • [6] Stokes equations under nonlinear slip boundary conditions coupled with the heat equation: A priori error analysis
    Djoko, Jules K.
    Konlack, Virginie S.
    Mbehou, Mohamed
    [J]. NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2020, 36 (01) : 86 - 117
  • [7] Navier-Stokes equations with slip boundary conditions
    Guo, Ben-Yu
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2008, 31 (05) : 607 - 626
  • [8] Slip Boundary Conditions for the Compressible Navier–Stokes Equations
    Kazuo Aoki
    Céline Baranger
    Masanari Hattori
    Shingo Kosuge
    Giorgio Martalò
    Julien Mathiaud
    Luc Mieussens
    [J]. Journal of Statistical Physics, 2017, 169 : 744 - 781
  • [9] Viscous boundary layers for the Navier–Stokes equations with the Navier slip conditions
    Dragoş Iftimie
    Franck Sueur
    [J]. Archive for Rational Mechanics and Analysis, 2011, 199 : 145 - 175
  • [10] Spectral Method for Navier–Stokes Equations with Slip Boundary Conditions
    Ben-yu Guo
    Yu-jian Jiao
    [J]. Journal of Scientific Computing, 2014, 58 : 249 - 274