Viscous boundary layers for the Navier–Stokes equations with the Navier slip conditions

被引:2
|
作者
Dragoş Iftimie
Franck Sueur
机构
[1] Université de Lyon,Institut Camille Jordan
[2] Université Lyon 1,Laboratoire Jacques
[3] CNRS,Louis Lions
[4] UMR 5208,undefined
[5] Université Pierre et Marie Curie,undefined
[6] Université Paris 6,undefined
[7] CNRS,undefined
[8] UMR 7598,undefined
关键词
Boundary Layer; Energy Inequality; Euler System; Velocity Boundary Layer; Viscous Boundary Layer;
D O I
暂无
中图分类号
学科分类号
摘要
We tackle the issue of the inviscid limit of the incompressible Navier–Stokes equations when the Navier slip-with-friction conditions are prescribed on impermeable boundaries. We justify an asymptotic expansion which involves a weak amplitude boundary layer, with the same thickness as in Prandtl’s theory and a linear behavior. This analysis holds for general regular domains, in both dimensions two and three.
引用
收藏
页码:145 / 175
页数:30
相关论文
共 50 条
  • [1] Viscous boundary layers for the Navier-Stokes equations with the Navier slip conditions
    Iftimie, Dragos
    Sueur, Franck
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2011, 199 (01) : 145 - 175
  • [2] Navier-Stokes equations with slip boundary conditions
    Guo, Ben-Yu
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2008, 31 (05) : 607 - 626
  • [3] Slip Boundary Conditions for the Compressible Navier–Stokes Equations
    Kazuo Aoki
    Céline Baranger
    Masanari Hattori
    Shingo Kosuge
    Giorgio Martalò
    Julien Mathiaud
    Luc Mieussens
    [J]. Journal of Statistical Physics, 2017, 169 : 744 - 781
  • [4] Stokes and Navier-Stokes equations with Navier boundary conditions
    Acevedo Tapia, P.
    Amrouche, C.
    Conca, C.
    Ghosh, A.
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 285 : 258 - 320
  • [5] Spectral Method for Navier–Stokes Equations with Slip Boundary Conditions
    Ben-yu Guo
    Yu-jian Jiao
    [J]. Journal of Scientific Computing, 2014, 58 : 249 - 274
  • [6] Slip Boundary Conditions for the Compressible Navier-Stokes Equations
    Aoki, Kazuo
    Baranger, Celine
    Hattori, Masanari
    Kosuge, Shingo
    Martalo, Giorgio
    Mathiaud, Julien
    Mieussens, Luc
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2017, 169 (04) : 744 - 781
  • [7] On Navier–Stokes Equations with Slip Boundary Conditions in an Infinite Pipe
    Piotr Bogusław Mucha
    [J]. Acta Applicandae Mathematica, 2003, 76 : 1 - 15
  • [8] On Regularity of a Weak Solution to the Navier-Stokes Equations with the Generalized Navier Slip Boundary Conditions
    Neustupa, Jiri
    Penel, Patrick
    [J]. ADVANCES IN MATHEMATICAL PHYSICS, 2018, 2018
  • [9] On Generalized Energy Inequality of the Damped Navier-Stokes Equations with Navier Slip Boundary Conditions
    Pal, Subha
    Chutia, Duranta
    [J]. MATHEMATICS AND COMPUTING, ICMC 2022, 2022, 415 : 465 - 478
  • [10] BOUNDARY LAYERS IN INCOMPRESSIBLE NAVIER-STOKES EQUATIONS WITH NAVIER BOUNDARY CONDITIONS FOR THE VANISHING VISCOSITY LIMIT
    Wang, Xiao-Ping
    Wang, Ya-Guang
    Xin, Zhouping
    [J]. COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2010, 8 (04) : 965 - 998