The 3D incompressible Hall magneto-hydrodynamics equations with partial hyperdissipation

被引:1
|
作者
Yuan, Baoquan [1 ]
Li, Chaoying [1 ]
机构
[1] Henan Polytech Univ, Sch Math & Informat Sci, Jiaozuo 454000, Henan, Peoples R China
基金
中国国家自然科学基金;
关键词
Hall magneto-hydrodynamics equations; Global regularity; Fractional partial dissipation; DATA GLOBAL EXISTENCE; BLOW-UP CRITERION; REGULARITY CRITERIA; MHD EQUATIONS; MAGNETOHYDRODYNAMIC EQUATIONS; WELL-POSEDNESS; DECAY; SYSTEM; WAVES;
D O I
10.1016/j.amc.2019.04.055
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Similarly as the 3D Navier-Stokes equation, the regularity and uniqueness of weak solutions for the 3D standard Hall-MHD equations remain completely open. Wan obtained the global smooth solutions for the incompressible Hall-MHD equations with hyperdissipation (-Delta)(alpha) and (-Delta)(beta) when alpha >= 5/4, beta >= 7/4 in (Global regularity for generalized Hall-magnetohydrodynamics systems, Wan (2015) [ 21]). We obtained the global regularity for the Hall-MHD equations with a logarithmic reduction in the dissipation in (Global regularity for a class of generalized Hall-magnetohydrodynamics equations, Yuan and Li (2018)). In this paper, we prove the global existence and uniqueness in the H-1-functional setting by energy method for the three-dimensional incompressible Hall-MHD equations with fractional partial dissipation, which improve Wan's result by making a different type of reduction in the dissipation. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:308 / 332
页数:25
相关论文
共 50 条
  • [1] A regularity criterion for the 3D incompressible magneto-hydrodynamics equations
    Xu, Fuyi
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 460 (02) : 634 - 644
  • [2] GLOBAL REGULARITY FOR 3D GENERALIZED HALL MAGNETO-HYDRODYNAMICS EQUATIONS
    Yuan, Baoquan
    Li, Chaoying
    [J]. JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2018, 8 (04): : 1143 - 1158
  • [3] A scaling invariant regularity criterion for the 3D incompressible magneto-hydrodynamics equations
    Fuyi Xu
    Xinliang Li
    Yujun Cui
    Yonghong Wu
    [J]. Zeitschrift für angewandte Mathematik und Physik, 2017, 68
  • [4] A scaling invariant regularity criterion for the 3D incompressible magneto-hydrodynamics equations
    Xu, Fuyi
    Li, Xinliang
    Cui, Yujun
    Wu, Yonghong
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2017, 68 (06):
  • [5] Analyticity of Mild Solution for the 3D Incompressible Magneto-hydrodynamics Equations in Critical Spaces
    Sheng Wang
    Yu Bing Ren
    Fu Yi Xu
    [J]. Acta Mathematica Sinica, English Series, 2018, 34 : 1731 - 1741
  • [6] Analyticity of Mild Solution for the 3D Incompressible Magneto-hydrodynamics Equations in Critical Spaces
    Wang, Sheng
    Ren, Yu Bing
    Xu, Fu Yi
    [J]. ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2018, 34 (11) : 1731 - 1741
  • [7] Analyticity of Mild Solution for the 3D Incompressible Magneto-hydrodynamics Equations in Critical Spaces
    Sheng WANG
    Yu Bing REN
    Fu Yi XU
    [J]. Acta Mathematica Sinica,English Series, 2018, (11) : 1731 - 1741
  • [8] Analyticity of Mild Solution for the 3D Incompressible Magneto-hydrodynamics Equations in Critical Spaces
    Sheng WANG
    Yu Bing REN
    Fu Yi XU
    [J]. Acta Mathematica Sinica, 2018, 34 (11) : 1731 - 1741
  • [9] Uniform stability for the 3D magneto-hydrodynamics equations
    Wu, Fan
    [J]. EUROPEAN JOURNAL OF MECHANICS B-FLUIDS, 2021, 90 : 1 - 6
  • [10] The 3D incompressible Navier-Stokes equations with partial hyperdissipation
    Yang, Wanrong
    Jiu, Quansen
    Wu, Jiahong
    [J]. MATHEMATISCHE NACHRICHTEN, 2019, 292 (08) : 1823 - 1836